[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -7,7 +7,7 @@ import torch
import torch.distributed as dist
from data import GLUEDataBuilder
from torch import nn
from torch.optim import Adam, AdamW, Optimizer
from torch.optim import Adam, Optimizer
from torch.utils._pytree import tree_map
from torch.utils.data import DataLoader
from tqdm import tqdm
@@ -15,12 +15,10 @@ from transformers import BertConfig, BertForSequenceClassification, get_linear_s
import colossalai
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer import HybridAdam
from colossalai.shardformer import ShardConfig, ShardFormer
def to_device(x: Any, device: torch.device) -> Any:
def _to(t: Any):
if isinstance(t, torch.Tensor):
return t.to(device)
@@ -34,10 +32,12 @@ def train(args):
coordinator = DistCoordinator()
# prepare for data and dataset
data_builder = GLUEDataBuilder(model_name_or_path=args.pretrain,
task_name=args.task,
train_batch_size=args.batch_size,
eval_batch_size=args.batch_size)
data_builder = GLUEDataBuilder(
model_name_or_path=args.pretrain,
task_name=args.task,
train_batch_size=args.batch_size,
eval_batch_size=args.batch_size,
)
train_dataloader = data_builder.train_dataloader()
test_dataloader = data_builder.test_dataloader()
@@ -49,10 +49,10 @@ def train(args):
# if multiple GPUs, shard the model
if dist.get_world_size() > 1:
tp_group = dist.new_group(backend='nccl')
shard_config = ShardConfig(tensor_parallel_process_group=tp_group,
enable_tensor_parallelism=True,
enable_all_optimization=True)
tp_group = dist.new_group(backend="nccl")
shard_config = ShardConfig(
tensor_parallel_process_group=tp_group, enable_tensor_parallelism=True, enable_all_optimization=True
)
shard_former = ShardFormer(shard_config=shard_config)
model, _ = shard_former.optimize(model)
@@ -64,21 +64,40 @@ def train(args):
num_warmup_steps=math.ceil(max_steps * args.warmup_fraction),
num_training_steps=max_steps,
)
fit(model, optim, lr_scheduler, train_dataloader, args.max_epochs, args.accumulation_steps, args.batch_size,
coordinator)
results = evaluate_model(model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits,
coordinator)
fit(
model,
optim,
lr_scheduler,
train_dataloader,
args.max_epochs,
args.accumulation_steps,
args.batch_size,
coordinator,
)
results = evaluate_model(
model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits, coordinator
)
if coordinator.is_master():
print(results)
if args.target_f1 is not None and 'f1' in results:
assert results['f1'] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
if args.target_f1 is not None and "f1" in results:
assert results["f1"] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
def fit(model: nn.Module, optimizer: Optimizer, scheduler, train_dataloader, max_epochs, accumulation_steps, batch_size,
coordinator):
step_bar = tqdm(range(len(train_dataloader) // accumulation_steps * max_epochs),
desc=f'steps',
disable=not coordinator.is_master())
def fit(
model: nn.Module,
optimizer: Optimizer,
scheduler,
train_dataloader,
max_epochs,
accumulation_steps,
batch_size,
coordinator,
):
step_bar = tqdm(
range(len(train_dataloader) // accumulation_steps * max_epochs),
desc=f"steps",
disable=not coordinator.is_master(),
)
total_loss = 0
for epoch in range(max_epochs):
model.train()
@@ -93,19 +112,23 @@ def fit(model: nn.Module, optimizer: Optimizer, scheduler, train_dataloader, max
optimizer.step()
scheduler.step()
optimizer.zero_grad()
step_bar.set_postfix({
'epoch': epoch,
'loss': total_loss / batch_size,
'lr': scheduler.get_last_lr()[0]
})
step_bar.set_postfix(
{"epoch": epoch, "loss": total_loss / batch_size, "lr": scheduler.get_last_lr()[0]}
)
total_loss = 0
step_bar.update()
# evaluate
@torch.no_grad()
def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int,
task_name: str, eval_splits: List[str], coordinator: DistCoordinator):
def evaluate_model(
model: nn.Module,
test_dataloader: Union[DataLoader, List[DataLoader]],
num_labels: int,
task_name: str,
eval_splits: List[str],
coordinator: DistCoordinator,
):
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size)
model.eval()
@@ -127,7 +150,7 @@ def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[Dat
results = metric.compute()
if coordinator.is_master():
results['loss'] = accum_loss.item() / (len(dataloader) * dataloader.batch_size)
results["loss"] = accum_loss.item() / (len(dataloader) * dataloader.batch_size)
return results
if isinstance(test_dataloader, DataLoader):
@@ -137,21 +160,21 @@ def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[Dat
final_results = {}
for split, sub_loader in zip(eval_splits, test_dataloader):
results = evaluate_subset(sub_loader)
final_results.update({f'{k}_{split}': v for k, v in results.items()})
final_results.update({f"{k}_{split}": v for k, v in results.items()})
return final_results
if __name__ == '__main__':
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run")
parser.add_argument('--model', type=str, default="bert")
parser.add_argument('--pretrain', type=str, default="bert-base-uncased")
parser.add_argument('--max_epochs', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--lr', type=float, default=2.4e-5)
parser.add_argument('--fused_layernorm', type=bool, default=False)
parser.add_argument('--accumulation_steps', type=int, default=8)
parser.add_argument('--warmup_fraction', type=float, default=0.03)
parser.add_argument('--target_f1', type=float, default=None)
parser.add_argument("-t", "--task", default="mrpc", help="GLUE task to run")
parser.add_argument("--model", type=str, default="bert")
parser.add_argument("--pretrain", type=str, default="bert-base-uncased")
parser.add_argument("--max_epochs", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--lr", type=float, default=2.4e-5)
parser.add_argument("--fused_layernorm", type=bool, default=False)
parser.add_argument("--accumulation_steps", type=int, default=8)
parser.add_argument("--warmup_fraction", type=float, default=0.03)
parser.add_argument("--target_f1", type=float, default=None)
args = parser.parse_args()
train(args)

View File

@@ -6,7 +6,6 @@ from colossalai.booster.plugin.dp_plugin_base import DPPluginBase
class GLUEDataBuilder:
task_text_field_map = {
"cola": ["sentence"],
"sst2": ["sentence"],
@@ -86,14 +85,12 @@ class GLUEDataBuilder:
def train_dataloader(self):
if self.plugin == None:
return self.native_prepare_dataloader(self.dataset["train"],
batch_size=self.train_batch_size,
shuffle=True,
drop_last=True)
return self.plugin.prepare_dataloader(self.dataset["train"],
batch_size=self.train_batch_size,
shuffle=True,
drop_last=True)
return self.native_prepare_dataloader(
self.dataset["train"], batch_size=self.train_batch_size, shuffle=True, drop_last=True
)
return self.plugin.prepare_dataloader(
self.dataset["train"], batch_size=self.train_batch_size, shuffle=True, drop_last=True
)
def val_dataloader(self):
if self.plugin == None:
@@ -118,7 +115,6 @@ class GLUEDataBuilder:
]
def convert_to_features(self, example_batch):
# Either encode single sentence or sentence pairs
if len(self.text_fields) > 1:
texts_or_text_pairs = list(zip(example_batch[self.text_fields[0]], example_batch[self.text_fields[1]]))
@@ -126,10 +122,9 @@ class GLUEDataBuilder:
texts_or_text_pairs = example_batch[self.text_fields[0]]
# Tokenize the text/text pairs
features = self.tokenizer.batch_encode_plus(texts_or_text_pairs,
max_length=self.max_seq_length,
padding='max_length',
truncation=True)
features = self.tokenizer.batch_encode_plus(
texts_or_text_pairs, max_length=self.max_seq_length, padding="max_length", truncation=True
)
# Rename label to labels to make it easier to pass to model forward
features["labels"] = example_batch["label"]
@@ -137,10 +132,6 @@ class GLUEDataBuilder:
return features
def native_prepare_dataloader(self, dataset, batch_size, shuffle=False, drop_last=False, pin_memory=False):
return DataLoader(dataset,
batch_size=batch_size,
sampler=None,
shuffle=shuffle,
drop_last=drop_last,
pin_memory=pin_memory)
return DataLoader(
dataset, batch_size=batch_size, sampler=None, shuffle=shuffle, drop_last=drop_last, pin_memory=pin_memory
)

View File

@@ -20,35 +20,35 @@ def data_gen_for_sequence_classification(batch_size, seq_length):
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen(batch_size, seq_length)
data['labels'] = torch.ones((batch_size), dtype=torch.long)
data["labels"] = torch.ones((batch_size), dtype=torch.long)
return data
MODEL_CONFIG = transformers.LlamaConfig(num_hidden_layers=4,
hidden_size=128,
intermediate_size=256,
num_attention_heads=4,
max_position_embeddings=128,
num_labels=16,
pad_token_id=2)
MODEL_CONFIG = transformers.LlamaConfig(
num_hidden_layers=4,
hidden_size=128,
intermediate_size=256,
num_attention_heads=4,
max_position_embeddings=128,
num_labels=16,
pad_token_id=2,
)
BATCH, N_HEADS, N_CTX, D_HEAD = 4, 8, 4096, 64
model_func = lambda: transformers.LlamaForSequenceClassification(MODEL_CONFIG)
# vary seq length for fixed head and batch=4
configs = [
triton.testing.Benchmark(x_names=['N_CTX'],
x_vals=[2**i for i in range(8, 13)],
line_arg='provider',
line_vals=['org_model', 'shard_model'],
line_names=['org_model', 'shard_model'],
styles=[('red', '-'), ('blue', '-')],
ylabel='ms',
plot_name=f'lama_for_sequence_classification-batch-{BATCH}',
args={
'BATCH': BATCH,
'dtype': torch.float16,
'model_func': model_func
})
triton.testing.Benchmark(
x_names=["N_CTX"],
x_vals=[2**i for i in range(8, 13)],
line_arg="provider",
line_vals=["org_model", "shard_model"],
line_names=["org_model", "shard_model"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"lama_for_sequence_classification-batch-{BATCH}",
args={"BATCH": BATCH, "dtype": torch.float16, "model_func": model_func},
)
]
@@ -85,4 +85,4 @@ def bench_shardformer(BATCH, N_CTX, provider, model_func, dtype=torch.float32, d
# torchrun --standalone --nproc_per_node=2 performance_benchmark.py
if __name__ == "__main__":
colossalai.launch_from_torch({})
bench_shardformer.run(save_path='.', print_data=dist.get_rank() == 0)
bench_shardformer.run(save_path=".", print_data=dist.get_rank() == 0)