[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,26 +1,19 @@
""" PyTorch ChatGLM model. """
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import List, Optional, Tuple
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss, LayerNorm
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
ChatGLMForConditionalGeneration,
ChatGLMModel,
GLMBlock,
)
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration, ChatGLMModel
def get_flash_core_attention_forward():
from colossalai.kernel.cuda_native import AttnMaskType, ColoAttention
from .chatglm2_6b.modeling_chatglm import CoreAttention
@@ -30,15 +23,15 @@ def get_flash_core_attention_forward():
if pytorch_major_version >= 2:
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
key_layer,
value_layer,
is_causal=True)
context_layer = torch.nn.functional.scaled_dot_product_attention(
query_layer, key_layer, value_layer, is_causal=True
)
else:
if attention_mask is not None:
attention_mask = ~attention_mask
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
attention_mask)
context_layer = torch.nn.functional.scaled_dot_product_attention(
query_layer, key_layer, value_layer, attention_mask
)
context_layer = context_layer.permute(2, 0, 1, 3)
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.reshape(*new_context_layer_shape)
@@ -60,15 +53,15 @@ def get_flash_core_attention_forward():
flash_attention_mask = ~(attention_mask[:, :, -1].squeeze(1).to(torch.bool)).contiguous()
attn_mask_type = AttnMaskType.paddedcausal
attention = ColoAttention(embed_dim=self.hidden_size_per_partition,
num_heads=self.num_attention_heads_per_partition,
dropout=self.attention_dropout.p,
scale=scale)
context_layer = attention(query_layer,
key_layer,
value_layer,
attn_mask=flash_attention_mask,
attn_mask_type=attn_mask_type)
attention = ColoAttention(
embed_dim=self.hidden_size_per_partition,
num_heads=self.num_attention_heads_per_partition,
dropout=self.attention_dropout.p,
scale=scale,
)
context_layer = attention(
query_layer, key_layer, value_layer, attn_mask=flash_attention_mask, attn_mask_type=attn_mask_type
)
context_layer = context_layer.permute(1, 0, -1).contiguous()
@@ -78,7 +71,6 @@ def get_flash_core_attention_forward():
def get_jit_fused_glm_block_forward():
from .chatglm2_6b.modeling_chatglm import GLMBlock
def forward(
@@ -129,9 +121,9 @@ def get_jit_fused_glm_block_forward():
class ChatGLMPipelineForwards:
'''
"""
This class serves as a micro library for ChatGLM model forwards under pipeline parallelism.
'''
"""
@staticmethod
def chatglm_model_forward(
@@ -151,19 +143,20 @@ class ChatGLMPipelineForwards:
shard_config: ShardConfig = None,
):
logger = logging.get_logger(__name__)
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if past_key_values:
logger.warning_once('Non-empty past_key_values is not supported for pipeline models at the moment.')
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.")
past_key_values = None
if output_hidden_states:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
if use_cache:
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
use_cache = False
if stage_manager.is_first_stage():
batch_size, seq_length = input_ids.shape
@@ -174,12 +167,13 @@ class ChatGLMPipelineForwards:
seq_length, batch_size = hidden_states.shape[:2]
if self.pre_seq_len is not None:
if past_key_values is None:
past_key_values = self.get_prompt(batch_size=batch_size,
device=input_ids.device,
dtype=inputs_embeds.dtype)
past_key_values = self.get_prompt(
batch_size=batch_size, device=input_ids.device, dtype=inputs_embeds.dtype
)
if attention_mask is not None:
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask],
dim=-1)
attention_mask = torch.cat(
[attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask], dim=-1
)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
@@ -196,37 +190,41 @@ class ChatGLMPipelineForwards:
if self.encoder.gradient_checkpointing and self.encoder.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
start_idx, end_idx = stage_index[0], stage_index[1]
if shard_config.enable_sequence_parallelism:
hidden_states = split_forward_gather_backward(hidden_states,
dim=0,
process_group=shard_config.tensor_parallel_process_group)
hidden_states = split_forward_gather_backward(
hidden_states, dim=0, process_group=shard_config.tensor_parallel_process_group
)
for idx in range(start_idx, end_idx):
layer = self.encoder._get_layer(idx)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.encoder.gradient_checkpointing and self.encoder.training:
layer_ret = torch.utils.checkpoint.checkpoint(layer, hidden_states, attention_mask, rotary_pos_emb,
past_key_values[idx], use_cache)
layer_ret = torch.utils.checkpoint.checkpoint(
layer, hidden_states, attention_mask, rotary_pos_emb, past_key_values[idx], use_cache
)
else:
layer_ret = layer(hidden_states,
full_attention_mask,
rotary_pos_emb,
kv_cache=past_key_values[idx],
use_cache=use_cache)
layer_ret = layer(
hidden_states,
full_attention_mask,
rotary_pos_emb,
kv_cache=past_key_values[idx],
use_cache=use_cache,
)
hidden_states, kv_cache = layer_ret
if use_cache:
presents = presents + (kv_cache,)
if shard_config.enable_sequence_parallelism:
hidden_states = gather_forward_split_backward(hidden_states,
dim=0,
process_group=shard_config.tensor_parallel_process_group)
hidden_states = gather_forward_split_backward(
hidden_states, dim=0, process_group=shard_config.tensor_parallel_process_group
)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if stage_manager.is_last_stage():
@@ -235,7 +233,8 @@ class ChatGLMPipelineForwards:
hidden_states = self.encoder.final_layernorm(hidden_states)
if not return_dict:
return tuple(
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
@@ -243,28 +242,30 @@ class ChatGLMPipelineForwards:
attentions=all_self_attentions,
)
else:
return {'hidden_states': hidden_states}
return {"hidden_states": hidden_states}
@staticmethod
def chatglm_for_conditional_generation_forward(self: ChatGLMForConditionalGeneration,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None):
logger = logging.get_logger(__name__)
def chatglm_for_conditional_generation_forward(
self: ChatGLMForConditionalGeneration,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
logging.get_logger(__name__)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = ChatGLMPipelineForwards.chatglm_model_forward(
self.transformer,
input_ids=input_ids,
@@ -312,7 +313,6 @@ class ChatGLMPipelineForwards:
def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
def forward(
self,
input_ids,
@@ -325,10 +325,11 @@ def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = input_ids.shape
@@ -365,9 +366,9 @@ def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
# Run encoder.
# [seq_len, batch_size, hidden_size] -> [seq_len/TP_size, batch_size, hidden_size]
inputs_embeds = split_forward_gather_backward(inputs_embeds,
dim=0,
process_group=shard_config.tensor_parallel_process_group)
inputs_embeds = split_forward_gather_backward(
inputs_embeds, dim=0, process_group=shard_config.tensor_parallel_process_group
)
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds,
full_attention_mask,
@@ -377,17 +378,21 @@ def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
output_hidden_states=output_hidden_states,
)
hidden_states = gather_forward_split_backward(hidden_states,
dim=0,
process_group=shard_config.tensor_parallel_process_group)
hidden_states = gather_forward_split_backward(
hidden_states, dim=0, process_group=shard_config.tensor_parallel_process_group
)
if not return_dict:
return tuple(v for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
] if v is not None)
return tuple(
v
for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,