[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -8,16 +8,16 @@ from colossalai.device.device_mesh import DeviceMesh
from .utils import merge_same_dim_mesh_list
__all__ = ['_DimSpec', 'ShardingException', 'ShardingSpec']
__all__ = ["_DimSpec", "ShardingException", "ShardingSpec"]
ALLGATHER_COST = 20
SHARD_COST = 5
STEP_PENALTY = 6
NAN = 'nan'
NAN = "nan"
class _DimSpec:
'''
"""
Sharding spec for single dimension of the sharded tensor describe the sharding dimension of
logical device mesh and give a method to compute the difference between them.
This class is used internally in ShardingSpec.
@@ -25,7 +25,7 @@ class _DimSpec:
Argument:
shard_list(List[int]): if shard_list is None, the dim spec will be 'R' type.
Otherwise, the element in shard_list means the data will be sharded in that dimension.
'''
"""
def __init__(self, shard_list):
self.is_replica = len(shard_list) == 0
@@ -37,41 +37,40 @@ class _DimSpec:
def __repr__(self):
if self.is_replica:
return 'R'
target = 'S'
return "R"
target = "S"
for dim in self.shard_list:
target += str(dim)
return target
def _convert_str_to_shard_list(self, str_spec):
'''
"""
Convert str_spec into shard_list.
Argument:
str_spec(str): dim spec in str type.
'''
"""
if str_spec == 'R':
if str_spec == "R":
return []
if str_spec == 'S0':
if str_spec == "S0":
return [0]
if str_spec == 'S1':
if str_spec == "S1":
return [1]
if str_spec == 'S01':
if str_spec == "S01":
return [0, 1]
def build_difference_2d_dict(self):
'''
"""
Build a difference mapping for 2D device mesh case. It will be used to
compute the difference between DimSpec pairs.
'''
"""
source_spec_list = ['R', 'S0', 'S1', 'S01']
target_spec_list = ['R', 'S0', 'S1', 'S01']
source_spec_list = ["R", "S0", "S1", "S01"]
target_spec_list = ["R", "S0", "S1", "S01"]
difference_dict = {}
for source_spec in source_spec_list:
for target_spec in target_spec_list:
legal_sharding_dims = []
spec_pair = (deepcopy(source_spec), deepcopy(target_spec))
source_shard_list = self._convert_str_to_shard_list(source_spec)
target_shard_list = self._convert_str_to_shard_list(target_spec)
@@ -81,14 +80,17 @@ class _DimSpec:
difference = 0
# all_gather(source) -> target
elif len(source_shard_list
) == len(target_shard_list) + 1 and source_shard_list[:-1] == target_shard_list:
elif (
len(source_shard_list) == len(target_shard_list) + 1 and source_shard_list[:-1] == target_shard_list
):
difference = ALLGATHER_COST
# shard(source) -> target
elif len(source_shard_list) == len(
target_shard_list) - 1 and source_shard_list == target_shard_list[:-1] and target_shard_list[
-1] not in source_shard_list:
elif (
len(source_shard_list) == len(target_shard_list) - 1
and source_shard_list == target_shard_list[:-1]
and target_shard_list[-1] not in source_shard_list
):
difference = SHARD_COST
# S1 -> S0 or S0 -> S1
@@ -119,7 +121,7 @@ class _DimSpec:
self.difference_dict = difference_dict
def difference(self, other):
'''
"""
The difference between two _DimSpec.
Argument:
@@ -135,7 +137,7 @@ class _DimSpec:
Output:
5
'''
"""
difference = self.difference_dict[(str(self), str(other))]
return difference
@@ -157,7 +159,7 @@ class ShardingNotDivisibleError(ShardingSpecException):
class ShardingSpec:
'''
"""
Sharding spec for a tensor, it contains info of the logical device mesh this tensor belong
to, the entire shape of the tensor before sharded, and the sharding sequence looks like
[R, R, S0, S1].
@@ -168,13 +170,11 @@ class ShardingSpec:
dim_partition_dict(Dict[int, List[int]] optional): The key is the dimension of tensor to be sharded,
and the value of the key describe which logical axis will be sharded in that dimension.
sharding_sequence(List[_DimSpec], optional): A straight view of ShardingSpec looks like [R, R, S0, S1].
'''
"""
def __init__(self,
device_mesh: DeviceMesh,
entire_shape: torch.Size,
dim_partition_dict=None,
sharding_sequence=None):
def __init__(
self, device_mesh: DeviceMesh, entire_shape: torch.Size, dim_partition_dict=None, sharding_sequence=None
):
self.device_mesh = device_mesh
if isinstance(entire_shape, (list, tuple)):
@@ -183,12 +183,17 @@ class ShardingSpec:
self.dim_partition_dict = dim_partition_dict
self.sharding_sequence = sharding_sequence
if self.sharding_sequence is None:
assert self.dim_partition_dict is not None, f'dim_partition_dict should not be None, if sharding_sequence is NoneType object.'
self.dim_partition_dict = merge_same_dim_mesh_list(dim_size=len(entire_shape),
dim_partition_dict=self.dim_partition_dict)
assert (
self.dim_partition_dict is not None
), f"dim_partition_dict should not be None, if sharding_sequence is NoneType object."
self.dim_partition_dict = merge_same_dim_mesh_list(
dim_size=len(entire_shape), dim_partition_dict=self.dim_partition_dict
)
self.convert_dict_to_shard_sequence()
elif self.dim_partition_dict is None:
assert self.sharding_sequence is not None, f'sharding_sequence should not be None, if dim_partition_dict is NoneType object.'
assert (
self.sharding_sequence is not None
), f"sharding_sequence should not be None, if dim_partition_dict is NoneType object."
self.convert_shard_sequence_to_dict()
self._sanity_check()
@@ -196,7 +201,7 @@ class ShardingSpec:
res_list = ["DistSpec:"]
res_list.append(f"\n\tshard_sequence: " + ",".join(str(dimspec) for dimspec in self.sharding_sequence))
res_list.append(f"\n\tdevice_mesh_shape: {self.device_mesh.shape}")
return ' '.join(res_list)
return " ".join(res_list)
def _sanity_check(self):
# make sure all axes in logical device mesh only be used once
@@ -207,7 +212,8 @@ class ShardingSpec:
dim_check_list.remove(element)
else:
raise DuplicatedShardingDimensionError(
f"find an invalid sharding axis {element} in dim_partition_dict in tensor dimension {dim}.")
f"find an invalid sharding axis {element} in dim_partition_dict in tensor dimension {dim}."
)
# make sure that the dimension is not out of index
for dim in self.dim_partition_dict.keys():
@@ -226,22 +232,22 @@ class ShardingSpec:
if tensor_dim_size % num_devices != 0:
raise ShardingNotDivisibleError(
f'The size of dimension at index {dim} is {tensor_dim_size}, it cannot be sharded over {num_devices} devices.'
f"The size of dimension at index {dim} is {tensor_dim_size}, it cannot be sharded over {num_devices} devices."
)
def convert_dict_to_shard_sequence(self):
'''
"""
Convert dim_partition_dict into list of _DimSpec, and assign it to sharding_sequence.
'''
"""
sharding_sequence = [_DimSpec([])] * len(self.entire_shape)
for dim, shard_list in self.dim_partition_dict.items():
sharding_sequence[dim] = _DimSpec(shard_list)
self.sharding_sequence = sharding_sequence
def convert_shard_sequence_to_dict(self):
'''
"""
Convert sharding_sequence into dim_partition_dict.
'''
"""
new_dim_partition_dict = {}
for index, dim_spec in enumerate(self.sharding_sequence):
if not dim_spec.is_replica:
@@ -251,7 +257,7 @@ class ShardingSpec:
self.dim_partition_dict = new_dim_partition_dict
def sharding_sequence_difference(self, other):
'''
"""
This function is a naive version of difference computation. It just simply accumulates difference every dimension between the
pair of sharding sequence.
@@ -276,21 +282,22 @@ class ShardingSpec:
Return:
difference(int): Difference between two ShardingSpec.
'''
"""
assert len(self.sharding_sequence) == len(
other.sharding_sequence), f'Cannot compare difference for two sharding specs with different length.'
other.sharding_sequence
), f"Cannot compare difference for two sharding specs with different length."
difference = 0
for orig_dim_spec, other_dim_spec in zip(self.sharding_sequence, other.sharding_sequence):
difference += orig_dim_spec.difference(other_dim_spec)
return difference
def get_sharded_shape_per_device(self):
sharded_shape = list(self.entire_shape)
for dim, shard_list in self.dim_partition_dict.items():
mesh_list = [self.device_mesh.shape[mesh_dim] for mesh_dim in shard_list]
shard_partitions = reduce(operator.mul, mesh_list, 1)
assert sharded_shape[
dim] % shard_partitions == 0, f'Cannot shard dimension {dim} into {shard_partitions} partitions.'
assert (
sharded_shape[dim] % shard_partitions == 0
), f"Cannot shard dimension {dim} into {shard_partitions} partitions."
sharded_shape[dim] //= shard_partitions
return torch.Size(sharded_shape)