[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -7,7 +7,7 @@ from colossalai.tensor.colo_tensor import ColoTensor
def all_gather_simulator(target_pair):
'''
"""
Simulating all-gather operation, analyze the communication cost
and simulate the influence of the DimSpec.
@@ -19,7 +19,7 @@ def all_gather_simulator(target_pair):
Argument:
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
and the second element describes which logical axis will be sharded in that dimension.
'''
"""
_, shard_list = target_pair
new_shard_list = shard_list[:-1]
@@ -27,7 +27,7 @@ def all_gather_simulator(target_pair):
def all_to_all_simulator(f_target_pair, b_target_pair):
'''
"""
Simulating all-to-all operation, analyze the communication cost
and simulate the influence of the DimSpec.
@@ -47,7 +47,7 @@ def all_to_all_simulator(f_target_pair, b_target_pair):
Argument:
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
and the second element describes which logical axis will be sharded in that dimension.
'''
"""
_, f_shard_list = f_target_pair
_, b_shard_list = b_target_pair
if not len(b_shard_list):
@@ -61,7 +61,7 @@ def all_to_all_simulator(f_target_pair, b_target_pair):
def shard_simulator(target_pair, legal_sharding_dims):
'''
"""
Simulating shard operation, analyze the communication cost(always ZERO)
and simulate the influence of the DimSpec.
@@ -78,7 +78,7 @@ def shard_simulator(target_pair, legal_sharding_dims):
Argument:
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
and the second element describes which logical axis will be sharded in that dimension.
'''
"""
_, shard_list = target_pair
shard_list_list = []
for dim in legal_sharding_dims:
@@ -91,7 +91,7 @@ def shard_simulator(target_pair, legal_sharding_dims):
def mix_gather_simulator(f_target_pair, b_target_pair):
'''
"""
Assume index of f and b target pairs are 'f' and 'b'
S0S1 => Input: (f, [0]), (b, [1]) Output: [b, f], (1, 0)
S1S0 => Input: (f, [1]), (b, [0]) Output: [b, f], (0, 1)
@@ -99,7 +99,7 @@ def mix_gather_simulator(f_target_pair, b_target_pair):
RS01 => Input: (f, []), (b, [0, 1]) Output: [b], (1, 1)
S10R => Input: (f, [0, 1]), (b, []) Output: [f], (0, 0)
RS10 => Input: (f, []), (b, [0, 1]) Output: [b], (0, 0)
'''
"""
if f_target_pair[1] and b_target_pair[1]:
leading_dim = b_target_pair[1] > f_target_pair[1]
return [b_target_pair[0], f_target_pair[0]], [int(leading_dim), int(leading_dim ^ 1)]
@@ -118,7 +118,7 @@ def mix_gather_simulator(f_target_pair, b_target_pair):
# The function is credited to PyTorch Team
def named_params_with_colotensor(
module: nn.Module,
prefix: str = '',
prefix: str = "",
recurse: bool = True,
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
r"""Returns an iterator over module parameters (together with the
@@ -154,7 +154,7 @@ def named_params_with_colotensor(
for name, val in vars(mod).items():
if isinstance(val, ColoTensor) and val not in memo:
memo.add(val)
name = mod_prefix + ('.' if mod_prefix else '') + name
name = mod_prefix + ("." if mod_prefix else "") + name
yield name, val
# find all nn.Parameters
@@ -169,15 +169,16 @@ def _convert_tensor(tensor: torch.Tensor) -> ColoTensor:
def convert_parameter(module: torch.nn.Module, param_name: str):
# Perform some validation first.
if not hasattr(module, param_name):
raise ValueError(f'module: {module} does not have parameter with name: {param_name}')
raise ValueError(f"module: {module} does not have parameter with name: {param_name}")
tensor = getattr(module, param_name)
if not isinstance(tensor, torch.Tensor):
raise ValueError(
f'Expected {type(module).__name__}.{param_name} to be a Tensor, but found {type(tensor).__name__}')
f"Expected {type(module).__name__}.{param_name} to be a Tensor, but found {type(tensor).__name__}"
)
if not tensor.is_contiguous():
raise ValueError(f'param: {param_name} is not a contiguous Tensor')
raise ValueError(f"param: {param_name} is not a contiguous Tensor")
st = _convert_tensor(tensor)
@@ -193,9 +194,9 @@ def convert_parameter(module: torch.nn.Module, param_name: str):
def convert_dim_partition_dict(dim_size: int, dim_partition_dict: Dict[int, List[int]]) -> Dict[int, List[int]]:
'''
"""
This method is used to convert the negative dim value to positive.
'''
"""
dims_to_convert = []
for dim, mesh_list in dim_partition_dict.items():
if dim < 0:
@@ -207,13 +208,13 @@ def convert_dim_partition_dict(dim_size: int, dim_partition_dict: Dict[int, List
def merge_same_dim_mesh_list(dim_size: int, dim_partition_dict: Dict[int, List[int]]) -> Dict[int, List[int]]:
'''
"""
This method is used to merge the different key value which points to same physical position.
For example:
dim_partition_dict: {1 :[0], -1: [1]} or {1: [0], 1: [1]} for a 2d tensor, the dim 1 and -1 point same physical position.
In this method, above dim_partition_dict will be converted to {1: [0, 1]}
'''
"""
converted_dim_partition_dict = {}
for dim, mesh_list in dim_partition_dict.items():
if dim < 0: