[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,13 +1,8 @@
import collections
import logging
import os
import random
import time
from enum import IntEnum
from random import choice
import jieba
import torch
jieba.setLogLevel(logging.CRITICAL)
import re
@@ -23,14 +18,15 @@ def map_to_numpy(data):
return np.asarray(data)
class PreTrainingDataset():
def __init__(self,
tokenizer,
max_seq_length,
backend='python',
max_predictions_per_seq: int = 80,
do_whole_word_mask: bool = True):
class PreTrainingDataset:
def __init__(
self,
tokenizer,
max_seq_length,
backend="python",
max_predictions_per_seq: int = 80,
do_whole_word_mask: bool = True,
):
self.tokenizer = tokenizer
self.max_seq_length = max_seq_length
self.masked_lm_prob = 0.15
@@ -38,8 +34,8 @@ class PreTrainingDataset():
self.do_whole_word_mask = do_whole_word_mask
self.max_predictions_per_seq = max_predictions_per_seq
self.vocab_words = list(tokenizer.vocab.keys())
self.rec = re.compile('[\u4E00-\u9FA5]')
self.whole_rec = re.compile('##[\u4E00-\u9FA5]')
self.rec = re.compile("[\u4E00-\u9FA5]")
self.whole_rec = re.compile("##[\u4E00-\u9FA5]")
self.mlm_p = 0.15
self.mlm_mask_p = 0.8
@@ -64,7 +60,7 @@ class PreTrainingDataset():
original_tokens = []
segment_ids = []
tokens.append("[CLS]")
original_tokens.append('[CLS]')
original_tokens.append("[CLS]")
segment_ids.append(0)
for index, token in enumerate(tokens_a):
tokens.append(token)
@@ -72,7 +68,7 @@ class PreTrainingDataset():
segment_ids.append(0)
tokens.append("[SEP]")
original_tokens.append('[SEP]')
original_tokens.append("[SEP]")
segment_ids.append(0)
# for token in tokens_b:
@@ -83,11 +79,16 @@ class PreTrainingDataset():
# segment_ids.append(1)
# Get Masked LM predictions
if self.backend == 'c++':
if self.backend == "c++":
output_tokens, masked_lm_output = mask.create_whole_masked_lm_predictions(
tokens, original_tokens, self.vocab_words, self.tokenizer.vocab, self.max_predictions_per_seq,
self.masked_lm_prob)
elif self.backend == 'python':
tokens,
original_tokens,
self.vocab_words,
self.tokenizer.vocab,
self.max_predictions_per_seq,
self.masked_lm_prob,
)
elif self.backend == "python":
output_tokens, masked_lm_output = self.create_whole_masked_lm_predictions(tokens)
# Convert to Ids
@@ -99,20 +100,20 @@ class PreTrainingDataset():
segment_ids.append(PAD)
input_mask.append(PAD)
masked_lm_output.append(-1)
return ([
return [
map_to_numpy(input_ids),
map_to_numpy(input_mask),
map_to_numpy(segment_ids),
map_to_numpy(masked_lm_output),
map_to_numpy([is_next])
])
map_to_numpy([is_next]),
]
def create_masked_lm_predictions(self, tokens):
cand_indexes = []
for i, token in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
if (self.do_whole_word_mask and len(cand_indexes) >= 1 and token.startswith("##")):
if self.do_whole_word_mask and len(cand_indexes) >= 1 and token.startswith("##"):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
@@ -160,7 +161,7 @@ class PreTrainingDataset():
Input a sentence, return a processed sentence: In order to support the Chinese whole word mask, the words that are separated will be marked with a special mark ("#"), so that the subsequent processing module can know which words belong to the same word.
:param segment: a sentence
"""
seq_cws = jieba.lcut(''.join(segment))
seq_cws = jieba.lcut("".join(segment))
seq_cws_dict = {x: 1 for x in seq_cws}
new_segment = []
i = 0
@@ -174,10 +175,10 @@ class PreTrainingDataset():
for length in range(3, 0, -1):
if i + length > len(segment):
continue
if ''.join(segment[i:i + length]) in seq_cws_dict:
if "".join(segment[i : i + length]) in seq_cws_dict:
new_segment.append(segment[i])
for l in range(1, length):
new_segment.append('##' + segment[i + l])
new_segment.append("##" + segment[i + l])
i += length
has_add = True
break
@@ -190,7 +191,7 @@ class PreTrainingDataset():
"""Creates the predictions for the masked LM objective."""
cand_indexes = []
for (i, token) in enumerate(tokens):
for i, token in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
# Whole Word Masking means that if we mask all of the wordpieces
@@ -202,14 +203,14 @@ class PreTrainingDataset():
# Note that Whole Word Masking does *not* change the training code
# at all -- we still predict each WordPiece independently, softmaxed
# over the entire vocabulary.
if (self.do_whole_word_mask and len(cand_indexes) >= 1 and token.startswith("##")):
if self.do_whole_word_mask and len(cand_indexes) >= 1 and token.startswith("##"):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
random.shuffle(cand_indexes)
output_tokens = [t[2:] if len(self.whole_rec.findall(t)) > 0 else t for t in tokens] # 去掉"##"
output_tokens = [t[2:] if len(self.whole_rec.findall(t)) > 0 else t for t in tokens] # 去掉"##"
num_to_predict = min(self.max_predictions_per_seq, max(1, int(round(len(tokens) * self.masked_lm_prob))))
@@ -239,8 +240,9 @@ class PreTrainingDataset():
else:
# 10% of the time, keep original
if random.random() < 0.5:
masked_token = tokens[index][2:] if len(self.whole_rec.findall(
tokens[index])) > 0 else tokens[index] # 去掉"##"
masked_token = (
tokens[index][2:] if len(self.whole_rec.findall(tokens[index])) > 0 else tokens[index]
) # 去掉"##"
# 10% of the time, replace with random word
else:
masked_token = self.vocab_words[random.randint(0, len(self.vocab_words) - 1)]
@@ -250,7 +252,9 @@ class PreTrainingDataset():
masked_lms.append(
MaskedLMInstance(
index=index,
label=tokens[index][2:] if len(self.whole_rec.findall(tokens[index])) > 0 else tokens[index]))
label=tokens[index][2:] if len(self.whole_rec.findall(tokens[index])) > 0 else tokens[index],
)
)
assert len(masked_lms) <= num_to_predict
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_output = [-1] * len(output_tokens)