[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -19,23 +19,27 @@ def evaluate(model, args, logger, global_step, criterion):
world_size = torch.distributed.get_world_size()
with torch.no_grad():
for shard in range(start_shard, len(os.listdir(args.eval_data_path_prefix))):
timers('eval_shard_time').start()
timers("eval_shard_time").start()
dataset_iterator, total_length = evaluate_dataset_provider.get_shard(shard)
# evaluate_dataset_provider.prefetch_shard(shard + 1)
if torch.distributed.get_rank() == 0:
iterator_data = tqdm(enumerate(dataset_iterator),
total=(total_length // args.eval_micro_batch_size_per_gpu // world_size),
colour='MAGENTA',
smoothing=1)
iterator_data = tqdm(
enumerate(dataset_iterator),
total=(total_length // args.eval_micro_batch_size_per_gpu // world_size),
colour="MAGENTA",
smoothing=1,
)
else:
iterator_data = enumerate(dataset_iterator)
for step, batch_data in iterator_data: #tqdm(enumerate(dataset_iterator), total=(total_length // args.train_micro_batch_size_per_gpu // world_size), colour='cyan', smoothing=1):
for (
step,
batch_data,
) in (
iterator_data
): # tqdm(enumerate(dataset_iterator), total=(total_length // args.train_micro_batch_size_per_gpu // world_size), colour='cyan', smoothing=1):
# batch_data = pretrain_dataset_provider.get_batch(batch_index)
eval_step += 1
input_ids = batch_data[0].cuda()
@@ -46,7 +50,7 @@ def evaluate(model, args, logger, global_step, criterion):
output = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
loss = criterion(output.logits, mlm_label) #prediction_scores
loss = criterion(output.logits, mlm_label) # prediction_scores
evaluate_dataset_provider.prefetch_batch()
eval_loss += loss.float().item()
@@ -58,18 +62,18 @@ def evaluate(model, args, logger, global_step, criterion):
if args.wandb and torch.distributed.get_rank() == 0:
tensorboard_log = get_tensorboard_writer()
tensorboard_log.log_eval({
'loss': cur_loss,
'ppl': ppl,
'mins_batch': elapsed_time_per_iteration
}, global_step)
tensorboard_log.log_eval(
{"loss": cur_loss, "ppl": ppl, "mins_batch": elapsed_time_per_iteration}, global_step
)
eval_log_str = f'evaluation shard: {shard} | step: {eval_step} | elapsed_time: {elapsed_time / 60 :.3f} minutes ' + \
f'| mins/batch: {elapsed_time_per_iteration :.3f} seconds | loss: {cur_loss:.7f} | ppl: {ppl:.7f}'
eval_log_str = (
f"evaluation shard: {shard} | step: {eval_step} | elapsed_time: {elapsed_time / 60 :.3f} minutes "
+ f"| mins/batch: {elapsed_time_per_iteration :.3f} seconds | loss: {cur_loss:.7f} | ppl: {ppl:.7f}"
)
logger.info(eval_log_str)
logger.info('-' * 100)
logger.info('')
logger.info("-" * 100)
logger.info("")
evaluate_dataset_provider.release_shard()
model.train()