[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -59,7 +59,8 @@ _TOKENIZER_FOR_DOC = "BertTokenizer"
# TokenClassification docstring
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
_TOKEN_CLASS_EXPECTED_OUTPUT = (
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] ")
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
)
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
# QuestionAnswering docstring
@@ -109,8 +110,10 @@ def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
import numpy as np
import tensorflow as tf
except ImportError:
logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
@@ -128,8 +131,10 @@ def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name):
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
@@ -209,7 +214,7 @@ class BertEmbeddings(nn.Module):
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length:seq_length + past_key_values_length]
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
@@ -236,12 +241,13 @@ class BertEmbeddings(nn.Module):
class BertSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})")
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
@@ -320,7 +326,7 @@ class BertSelfAttention(nn.Module):
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
@@ -360,7 +366,6 @@ class BertSelfAttention(nn.Module):
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
@@ -375,7 +380,6 @@ class BertSelfOutput(nn.Module):
class BertAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type)
@@ -385,8 +389,9 @@ class BertAttention(nn.Module):
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(heads, self.self.num_attention_heads,
self.self.attention_head_size, self.pruned_heads)
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
@@ -419,12 +424,11 @@ class BertAttention(nn.Module):
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
@@ -440,7 +444,6 @@ class BertIntermediate(nn.Module):
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
@@ -455,7 +458,6 @@ class BertOutput(nn.Module):
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
@@ -496,14 +498,15 @@ class BertLayer(nn.Module):
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`")
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
@@ -517,14 +520,15 @@ class BertLayer(nn.Module):
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(self.feed_forward_chunk, self.chunk_size_feed_forward,
self.seq_len_dim, attention_output)
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
@@ -540,7 +544,6 @@ class BertLayer(nn.Module):
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
@@ -573,14 +576,13 @@ class BertEncoder(nn.Module):
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
@@ -617,13 +619,17 @@ class BertEncoder(nn.Module):
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
] if v is not None)
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
@@ -634,7 +640,6 @@ class BertEncoder(nn.Module):
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
@@ -650,7 +655,6 @@ class BertPooler(nn.Module):
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
@@ -668,7 +672,6 @@ class BertPredictionHeadTransform(nn.Module):
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
@@ -689,7 +692,6 @@ class BertLMPredictionHead(nn.Module):
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
@@ -700,7 +702,6 @@ class BertOnlyMLMHead(nn.Module):
class BertOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
@@ -711,7 +712,6 @@ class BertOnlyNSPHead(nn.Module):
class BertPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
@@ -943,8 +943,9 @@ class BertModel(BertPreTrainedModel):
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
@@ -1043,7 +1044,6 @@ class BertModel(BertPreTrainedModel):
BERT_START_DOCSTRING,
)
class BertForPreTraining(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
@@ -1144,10 +1144,10 @@ class BertForPreTraining(BertPreTrainedModel):
)
@add_start_docstrings("""Bert Model with a `language modeling` head on top for CLM fine-tuning.""",
BERT_START_DOCSTRING)
@add_start_docstrings(
"""Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING
)
class BertLMHeadModel(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
@@ -1282,7 +1282,6 @@ class BertLMHeadModel(BertPreTrainedModel):
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
class BertForMaskedLM(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
@@ -1290,8 +1289,10 @@ class BertForMaskedLM(BertPreTrainedModel):
super().__init__(config)
if config.is_decoder:
logger.warning("If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention.")
logger.warning(
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
@@ -1357,7 +1358,7 @@ class BertForMaskedLM(BertPreTrainedModel):
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
@@ -1380,10 +1381,9 @@ class BertForMaskedLM(BertPreTrainedModel):
raise ValueError("The PAD token should be defined for generation")
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full((effective_batch_size, 1),
self.config.pad_token_id,
dtype=torch.long,
device=input_ids.device)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@@ -1394,7 +1394,6 @@ class BertForMaskedLM(BertPreTrainedModel):
BERT_START_DOCSTRING,
)
class BertForNextSentencePrediction(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
@@ -1500,15 +1499,15 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
BERT_START_DOCSTRING,
)
class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
classifier_dropout = (config.classifier_dropout
if config.classifier_dropout is not None else config.hidden_dropout_prob)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
@@ -1604,13 +1603,13 @@ class BertForSequenceClassification(BertPreTrainedModel):
BERT_START_DOCSTRING,
)
class BertForMultipleChoice(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
classifier_dropout = (config.classifier_dropout
if config.classifier_dropout is not None else config.hidden_dropout_prob)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
@@ -1650,8 +1649,11 @@ class BertForMultipleChoice(BertPreTrainedModel):
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None else None)
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids,
@@ -1696,7 +1698,6 @@ class BertForMultipleChoice(BertPreTrainedModel):
BERT_START_DOCSTRING,
)
class BertForTokenClassification(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
@@ -1704,8 +1705,9 @@ class BertForTokenClassification(BertPreTrainedModel):
self.num_labels = config.num_labels
self.bert = BertModel(config, add_pooling_layer=False)
classifier_dropout = (config.classifier_dropout
if config.classifier_dropout is not None else config.hidden_dropout_prob)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
@@ -1782,7 +1784,6 @@ class BertForTokenClassification(BertPreTrainedModel):
BERT_START_DOCSTRING,
)
class BertForQuestionAnswering(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):