mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 04:24:47 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -17,6 +17,7 @@ from ldm.modules.attention import MemoryEfficientCrossAttention
|
||||
try:
|
||||
import xformers
|
||||
import xformers.ops
|
||||
|
||||
XFORMERS_IS_AVAILBLE = True
|
||||
except:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
@@ -39,7 +40,7 @@ def get_timestep_embedding(timesteps, embedding_dim):
|
||||
emb = emb.to(device=timesteps.device)
|
||||
emb = timesteps.float()[:, None] * emb[None, :]
|
||||
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||||
if embedding_dim % 2 == 1: # zero pad
|
||||
if embedding_dim % 2 == 1: # zero pad
|
||||
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
||||
return emb
|
||||
|
||||
@@ -54,7 +55,6 @@ def Normalize(in_channels, num_groups=32):
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
@@ -69,7 +69,6 @@ class Upsample(nn.Module):
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
@@ -88,7 +87,6 @@ class Downsample(nn.Module):
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
@@ -133,7 +131,6 @@ class ResnetBlock(nn.Module):
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
@@ -154,16 +151,16 @@ class AttnBlock(nn.Module):
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
q = q.reshape(b, c, h * w)
|
||||
q = q.permute(0, 2, 1) # b,hw,c
|
||||
k = k.reshape(b, c, h * w) # b,c,hw
|
||||
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||
w_ = w_ * (int(c)**(-0.5))
|
||||
q = q.permute(0, 2, 1) # b,hw,c
|
||||
k = k.reshape(b, c, h * w) # b,c,hw
|
||||
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||
w_ = w_ * (int(c) ** (-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = v.reshape(b, c, h * w)
|
||||
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
||||
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
||||
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||
h_ = h_.reshape(b, c, h, w)
|
||||
|
||||
h_ = self.proj_out(h_)
|
||||
@@ -173,9 +170,9 @@ class AttnBlock(nn.Module):
|
||||
|
||||
class MemoryEfficientAttnBlock(nn.Module):
|
||||
"""
|
||||
Uses xformers efficient implementation,
|
||||
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||
Note: this is a single-head self-attention operation
|
||||
Uses xformers efficient implementation,
|
||||
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||
Note: this is a single-head self-attention operation
|
||||
"""
|
||||
|
||||
#
|
||||
@@ -199,34 +196,41 @@ class MemoryEfficientAttnBlock(nn.Module):
|
||||
|
||||
# compute attention
|
||||
B, C, H, W = q.shape
|
||||
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
|
||||
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
|
||||
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3).reshape(B, t.shape[1], 1, C).permute(0, 2, 1, 3).reshape(B * 1, t.shape[1], C).
|
||||
contiguous(),
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(B, t.shape[1], 1, C)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(B * 1, t.shape[1], C)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
||||
|
||||
out = (out.unsqueeze(0).reshape(B, 1, out.shape[1], C).permute(0, 2, 1, 3).reshape(B, out.shape[1], C))
|
||||
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
|
||||
out = out.unsqueeze(0).reshape(B, 1, out.shape[1], C).permute(0, 2, 1, 3).reshape(B, out.shape[1], C)
|
||||
out = rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
|
||||
out = self.proj_out(out)
|
||||
return x + out
|
||||
|
||||
|
||||
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
||||
|
||||
def forward(self, x, context=None, mask=None):
|
||||
b, c, h, w = x.shape
|
||||
x = rearrange(x, 'b c h w -> b (h w) c')
|
||||
x = rearrange(x, "b c h w -> b (h w) c")
|
||||
out = super().forward(x, context=context, mask=mask)
|
||||
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
|
||||
out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c)
|
||||
return x + out
|
||||
|
||||
|
||||
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
||||
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear",
|
||||
"none"], f'attn_type {attn_type} unknown'
|
||||
assert attn_type in [
|
||||
"vanilla",
|
||||
"vanilla-xformers",
|
||||
"memory-efficient-cross-attn",
|
||||
"linear",
|
||||
"none",
|
||||
], f"attn_type {attn_type} unknown"
|
||||
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
|
||||
attn_type = "vanilla-xformers"
|
||||
if attn_type == "vanilla":
|
||||
@@ -245,21 +249,22 @@ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
use_timestep=True,
|
||||
use_linear_attn=False,
|
||||
attn_type="vanilla"):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
use_timestep=True,
|
||||
use_linear_attn=False,
|
||||
attn_type="vanilla",
|
||||
):
|
||||
super().__init__()
|
||||
if use_linear_attn:
|
||||
attn_type = "linear"
|
||||
@@ -274,10 +279,12 @@ class Model(nn.Module):
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
self.temb = nn.Module()
|
||||
self.temb.dense = nn.ModuleList([
|
||||
torch.nn.Linear(self.ch, self.temb_ch),
|
||||
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
||||
])
|
||||
self.temb.dense = nn.ModuleList(
|
||||
[
|
||||
torch.nn.Linear(self.ch, self.temb_ch),
|
||||
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
||||
]
|
||||
)
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
||||
@@ -292,10 +299,10 @@ class Model(nn.Module):
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
@@ -309,15 +316,13 @@ class Model(nn.Module):
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
@@ -330,10 +335,13 @@ class Model(nn.Module):
|
||||
if i_block == self.num_res_blocks:
|
||||
skip_in = ch * in_ch_mult[i_level]
|
||||
block.append(
|
||||
ResnetBlock(in_channels=block_in + skip_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
ResnetBlock(
|
||||
in_channels=block_in + skip_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
@@ -343,14 +351,14 @@ class Model(nn.Module):
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x, t=None, context=None):
|
||||
#assert x.shape[2] == x.shape[3] == self.resolution
|
||||
# assert x.shape[2] == x.shape[3] == self.resolution
|
||||
if context is not None:
|
||||
# assume aligned context, cat along channel axis
|
||||
x = torch.cat((x, context), dim=1)
|
||||
@@ -401,23 +409,24 @@ class Model(nn.Module):
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
double_z=True,
|
||||
use_linear_attn=False,
|
||||
attn_type="vanilla",
|
||||
**ignore_kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
double_z=True,
|
||||
use_linear_attn=False,
|
||||
attn_type="vanilla",
|
||||
**ignore_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
if use_linear_attn:
|
||||
attn_type = "linear"
|
||||
@@ -442,10 +451,10 @@ class Encoder(nn.Module):
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
@@ -459,23 +468,19 @@ class Encoder(nn.Module):
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in,
|
||||
2 * z_channels if double_z else z_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# timestep embedding
|
||||
@@ -506,24 +511,25 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
give_pre_end=False,
|
||||
tanh_out=False,
|
||||
use_linear_attn=False,
|
||||
attn_type="vanilla",
|
||||
**ignorekwargs):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
give_pre_end=False,
|
||||
tanh_out=False,
|
||||
use_linear_attn=False,
|
||||
attn_type="vanilla",
|
||||
**ignorekwargs,
|
||||
):
|
||||
super().__init__()
|
||||
if use_linear_attn:
|
||||
attn_type = "linear"
|
||||
@@ -537,9 +543,9 @@ class Decoder(nn.Module):
|
||||
self.tanh_out = tanh_out
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
(1,) + tuple(ch_mult)
|
||||
block_in = ch * ch_mult[self.num_resolutions - 1]
|
||||
curr_res = resolution // 2**(self.num_resolutions - 1)
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
self.z_shape = (1, z_channels, curr_res, curr_res)
|
||||
rank_zero_info("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
@@ -548,15 +554,13 @@ class Decoder(nn.Module):
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
@@ -566,10 +570,10 @@ class Decoder(nn.Module):
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(
|
||||
ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
@@ -579,14 +583,14 @@ class Decoder(nn.Module):
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, z):
|
||||
#assert z.shape[1:] == self.z_shape[1:]
|
||||
# assert z.shape[1:] == self.z_shape[1:]
|
||||
self.last_z_shape = z.shape
|
||||
|
||||
# timestep embedding
|
||||
@@ -622,17 +626,18 @@ class Decoder(nn.Module):
|
||||
|
||||
|
||||
class SimpleDecoder(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
||||
super().__init__()
|
||||
self.model = nn.ModuleList([
|
||||
nn.Conv2d(in_channels, in_channels, 1),
|
||||
ResnetBlock(in_channels=in_channels, out_channels=2 * in_channels, temb_channels=0, dropout=0.0),
|
||||
ResnetBlock(in_channels=2 * in_channels, out_channels=4 * in_channels, temb_channels=0, dropout=0.0),
|
||||
ResnetBlock(in_channels=4 * in_channels, out_channels=2 * in_channels, temb_channels=0, dropout=0.0),
|
||||
nn.Conv2d(2 * in_channels, in_channels, 1),
|
||||
Upsample(in_channels, with_conv=True)
|
||||
])
|
||||
self.model = nn.ModuleList(
|
||||
[
|
||||
nn.Conv2d(in_channels, in_channels, 1),
|
||||
ResnetBlock(in_channels=in_channels, out_channels=2 * in_channels, temb_channels=0, dropout=0.0),
|
||||
ResnetBlock(in_channels=2 * in_channels, out_channels=4 * in_channels, temb_channels=0, dropout=0.0),
|
||||
ResnetBlock(in_channels=4 * in_channels, out_channels=2 * in_channels, temb_channels=0, dropout=0.0),
|
||||
nn.Conv2d(2 * in_channels, in_channels, 1),
|
||||
Upsample(in_channels, with_conv=True),
|
||||
]
|
||||
)
|
||||
# end
|
||||
self.norm_out = Normalize(in_channels)
|
||||
self.conv_out = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
@@ -651,7 +656,6 @@ class SimpleDecoder(nn.Module):
|
||||
|
||||
|
||||
class UpsampleDecoder(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, ch_mult=(2, 2), dropout=0.0):
|
||||
super().__init__()
|
||||
# upsampling
|
||||
@@ -659,7 +663,7 @@ class UpsampleDecoder(nn.Module):
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
block_in = in_channels
|
||||
curr_res = resolution // 2**(self.num_resolutions - 1)
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
self.res_blocks = nn.ModuleList()
|
||||
self.upsample_blocks = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
@@ -667,10 +671,10 @@ class UpsampleDecoder(nn.Module):
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
res_block.append(
|
||||
ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
self.res_blocks.append(nn.ModuleList(res_block))
|
||||
if i_level != self.num_resolutions - 1:
|
||||
@@ -696,21 +700,24 @@ class UpsampleDecoder(nn.Module):
|
||||
|
||||
|
||||
class LatentRescaler(nn.Module):
|
||||
|
||||
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
||||
super().__init__()
|
||||
# residual block, interpolate, residual block
|
||||
self.factor = factor
|
||||
self.conv_in = nn.Conv2d(in_channels, mid_channels, kernel_size=3, stride=1, padding=1)
|
||||
self.res_block1 = nn.ModuleList([
|
||||
ResnetBlock(in_channels=mid_channels, out_channels=mid_channels, temb_channels=0, dropout=0.0)
|
||||
for _ in range(depth)
|
||||
])
|
||||
self.res_block1 = nn.ModuleList(
|
||||
[
|
||||
ResnetBlock(in_channels=mid_channels, out_channels=mid_channels, temb_channels=0, dropout=0.0)
|
||||
for _ in range(depth)
|
||||
]
|
||||
)
|
||||
self.attn = AttnBlock(mid_channels)
|
||||
self.res_block2 = nn.ModuleList([
|
||||
ResnetBlock(in_channels=mid_channels, out_channels=mid_channels, temb_channels=0, dropout=0.0)
|
||||
for _ in range(depth)
|
||||
])
|
||||
self.res_block2 = nn.ModuleList(
|
||||
[
|
||||
ResnetBlock(in_channels=mid_channels, out_channels=mid_channels, temb_channels=0, dropout=0.0)
|
||||
for _ in range(depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.conv_out = nn.Conv2d(
|
||||
mid_channels,
|
||||
@@ -722,9 +729,9 @@ class LatentRescaler(nn.Module):
|
||||
x = self.conv_in(x)
|
||||
for block in self.res_block1:
|
||||
x = block(x, None)
|
||||
x = torch.nn.functional.interpolate(x,
|
||||
size=(int(round(x.shape[2] * self.factor)),
|
||||
int(round(x.shape[3] * self.factor))))
|
||||
x = torch.nn.functional.interpolate(
|
||||
x, size=(int(round(x.shape[2] * self.factor)), int(round(x.shape[3] * self.factor)))
|
||||
)
|
||||
x = self.attn(x)
|
||||
for block in self.res_block2:
|
||||
x = block(x, None)
|
||||
@@ -733,37 +740,42 @@ class LatentRescaler(nn.Module):
|
||||
|
||||
|
||||
class MergedRescaleEncoder(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
ch,
|
||||
resolution,
|
||||
out_ch,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
rescale_factor=1.0,
|
||||
rescale_module_depth=1):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
ch,
|
||||
resolution,
|
||||
out_ch,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
rescale_factor=1.0,
|
||||
rescale_module_depth=1,
|
||||
):
|
||||
super().__init__()
|
||||
intermediate_chn = ch * ch_mult[-1]
|
||||
self.encoder = Encoder(in_channels=in_channels,
|
||||
num_res_blocks=num_res_blocks,
|
||||
ch=ch,
|
||||
ch_mult=ch_mult,
|
||||
z_channels=intermediate_chn,
|
||||
double_z=False,
|
||||
resolution=resolution,
|
||||
attn_resolutions=attn_resolutions,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
out_ch=None)
|
||||
self.rescaler = LatentRescaler(factor=rescale_factor,
|
||||
in_channels=intermediate_chn,
|
||||
mid_channels=intermediate_chn,
|
||||
out_channels=out_ch,
|
||||
depth=rescale_module_depth)
|
||||
self.encoder = Encoder(
|
||||
in_channels=in_channels,
|
||||
num_res_blocks=num_res_blocks,
|
||||
ch=ch,
|
||||
ch_mult=ch_mult,
|
||||
z_channels=intermediate_chn,
|
||||
double_z=False,
|
||||
resolution=resolution,
|
||||
attn_resolutions=attn_resolutions,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
out_ch=None,
|
||||
)
|
||||
self.rescaler = LatentRescaler(
|
||||
factor=rescale_factor,
|
||||
in_channels=intermediate_chn,
|
||||
mid_channels=intermediate_chn,
|
||||
out_channels=out_ch,
|
||||
depth=rescale_module_depth,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.encoder(x)
|
||||
@@ -772,36 +784,41 @@ class MergedRescaleEncoder(nn.Module):
|
||||
|
||||
|
||||
class MergedRescaleDecoder(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
z_channels,
|
||||
out_ch,
|
||||
resolution,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
rescale_factor=1.0,
|
||||
rescale_module_depth=1):
|
||||
def __init__(
|
||||
self,
|
||||
z_channels,
|
||||
out_ch,
|
||||
resolution,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
rescale_factor=1.0,
|
||||
rescale_module_depth=1,
|
||||
):
|
||||
super().__init__()
|
||||
tmp_chn = z_channels * ch_mult[-1]
|
||||
self.decoder = Decoder(out_ch=out_ch,
|
||||
z_channels=tmp_chn,
|
||||
attn_resolutions=attn_resolutions,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
in_channels=None,
|
||||
num_res_blocks=num_res_blocks,
|
||||
ch_mult=ch_mult,
|
||||
resolution=resolution,
|
||||
ch=ch)
|
||||
self.rescaler = LatentRescaler(factor=rescale_factor,
|
||||
in_channels=z_channels,
|
||||
mid_channels=tmp_chn,
|
||||
out_channels=tmp_chn,
|
||||
depth=rescale_module_depth)
|
||||
self.decoder = Decoder(
|
||||
out_ch=out_ch,
|
||||
z_channels=tmp_chn,
|
||||
attn_resolutions=attn_resolutions,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
in_channels=None,
|
||||
num_res_blocks=num_res_blocks,
|
||||
ch_mult=ch_mult,
|
||||
resolution=resolution,
|
||||
ch=ch,
|
||||
)
|
||||
self.rescaler = LatentRescaler(
|
||||
factor=rescale_factor,
|
||||
in_channels=z_channels,
|
||||
mid_channels=tmp_chn,
|
||||
out_channels=tmp_chn,
|
||||
depth=rescale_module_depth,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.rescaler(x)
|
||||
@@ -810,27 +827,27 @@ class MergedRescaleDecoder(nn.Module):
|
||||
|
||||
|
||||
class Upsampler(nn.Module):
|
||||
|
||||
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
||||
super().__init__()
|
||||
assert out_size >= in_size
|
||||
num_blocks = int(np.log2(out_size // in_size)) + 1
|
||||
factor_up = 1. + (out_size % in_size)
|
||||
factor_up = 1.0 + (out_size % in_size)
|
||||
rank_zero_info(
|
||||
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
|
||||
)
|
||||
self.rescaler = LatentRescaler(factor=factor_up,
|
||||
in_channels=in_channels,
|
||||
mid_channels=2 * in_channels,
|
||||
out_channels=in_channels)
|
||||
self.decoder = Decoder(out_ch=out_channels,
|
||||
resolution=out_size,
|
||||
z_channels=in_channels,
|
||||
num_res_blocks=2,
|
||||
attn_resolutions=[],
|
||||
in_channels=None,
|
||||
ch=in_channels,
|
||||
ch_mult=[ch_mult for _ in range(num_blocks)])
|
||||
self.rescaler = LatentRescaler(
|
||||
factor=factor_up, in_channels=in_channels, mid_channels=2 * in_channels, out_channels=in_channels
|
||||
)
|
||||
self.decoder = Decoder(
|
||||
out_ch=out_channels,
|
||||
resolution=out_size,
|
||||
z_channels=in_channels,
|
||||
num_res_blocks=2,
|
||||
attn_resolutions=[],
|
||||
in_channels=None,
|
||||
ch=in_channels,
|
||||
ch_mult=[ch_mult for _ in range(num_blocks)],
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.rescaler(x)
|
||||
@@ -839,14 +856,14 @@ class Upsampler(nn.Module):
|
||||
|
||||
|
||||
class Resize(nn.Module):
|
||||
|
||||
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
||||
super().__init__()
|
||||
self.with_conv = learned
|
||||
self.mode = mode
|
||||
if self.with_conv:
|
||||
rank_zero_info(
|
||||
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
||||
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode"
|
||||
)
|
||||
raise NotImplementedError()
|
||||
assert in_channels is not None
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
|
@@ -1,21 +1,20 @@
|
||||
from abc import abstractmethod
|
||||
import math
|
||||
from abc import abstractmethod
|
||||
|
||||
import numpy as np
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ldm.modules.attention import SpatialTransformer
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
avg_pool_nd,
|
||||
checkpoint,
|
||||
conv_nd,
|
||||
linear,
|
||||
avg_pool_nd,
|
||||
zero_module,
|
||||
normalization,
|
||||
timestep_embedding,
|
||||
zero_module,
|
||||
)
|
||||
from ldm.modules.attention import SpatialTransformer
|
||||
from ldm.util import exists
|
||||
|
||||
|
||||
@@ -23,6 +22,7 @@ from ldm.util import exists
|
||||
def convert_module_to_f16(x):
|
||||
pass
|
||||
|
||||
|
||||
def convert_module_to_f32(x):
|
||||
pass
|
||||
|
||||
@@ -41,7 +41,7 @@ class AttentionPool2d(nn.Module):
|
||||
output_dim: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
||||
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
|
||||
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||
self.num_heads = embed_dim // num_heads_channels
|
||||
@@ -108,25 +108,25 @@ class Upsample(nn.Module):
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(
|
||||
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
||||
)
|
||||
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class TransposedUpsample(nn.Module):
|
||||
'Learned 2x upsampling without padding'
|
||||
"Learned 2x upsampling without padding"
|
||||
|
||||
def __init__(self, channels, out_channels=None, ks=5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
|
||||
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
||||
self.up = nn.ConvTranspose2d(self.channels, self.out_channels, kernel_size=ks, stride=2)
|
||||
|
||||
def forward(self,x):
|
||||
def forward(self, x):
|
||||
return self.up(x)
|
||||
|
||||
|
||||
@@ -139,7 +139,7 @@ class Downsample(nn.Module):
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
@@ -147,9 +147,7 @@ class Downsample(nn.Module):
|
||||
self.dims = dims
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
||||
)
|
||||
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
@@ -225,17 +223,13 @@ class ResBlock(TimestepBlock):
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
||||
),
|
||||
zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(
|
||||
dims, channels, self.out_channels, 3, padding=1
|
||||
)
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
@@ -246,10 +240,7 @@ class ResBlock(TimestepBlock):
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
||||
)
|
||||
|
||||
return checkpoint(self._forward, (x, emb), self.parameters(), self.use_checkpoint)
|
||||
|
||||
def _forward(self, x, emb):
|
||||
if self.updown:
|
||||
@@ -311,8 +302,10 @@ class AttentionBlock(nn.Module):
|
||||
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
||||
|
||||
def forward(self, x):
|
||||
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
||||
#return pt_checkpoint(self._forward, x) # pytorch
|
||||
return checkpoint(
|
||||
self._forward, (x,), self.parameters(), True
|
||||
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
||||
# return pt_checkpoint(self._forward, x) # pytorch
|
||||
|
||||
def _forward(self, x):
|
||||
b, c, *spatial = x.shape
|
||||
@@ -339,7 +332,7 @@ def count_flops_attn(model, _x, y):
|
||||
# We perform two matmuls with the same number of ops.
|
||||
# The first computes the weight matrix, the second computes
|
||||
# the combination of the value vectors.
|
||||
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
||||
matmul_ops = 2 * b * (num_spatial**2) * c
|
||||
model.total_ops += th.DoubleTensor([matmul_ops])
|
||||
|
||||
|
||||
@@ -363,9 +356,7 @@ class QKVAttentionLegacy(nn.Module):
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts", q * scale, k * scale
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v)
|
||||
return a.reshape(bs, -1, length)
|
||||
@@ -460,10 +451,10 @@ class UNetModel(nn.Module):
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
legacy=True,
|
||||
disable_self_attentions=None,
|
||||
num_attention_blocks=None,
|
||||
@@ -472,11 +463,16 @@ class UNetModel(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
if use_spatial_transformer:
|
||||
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
||||
assert (
|
||||
context_dim is not None
|
||||
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
||||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
assert (
|
||||
use_spatial_transformer
|
||||
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
||||
from omegaconf.listconfig import ListConfig
|
||||
|
||||
if type(context_dim) == ListConfig:
|
||||
context_dim = list(context_dim)
|
||||
|
||||
@@ -484,10 +480,10 @@ class UNetModel(nn.Module):
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
assert num_head_channels != -1, "Either num_heads or num_head_channels has to be set"
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
assert num_heads != -1, "Either num_heads or num_head_channels has to be set"
|
||||
|
||||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
@@ -497,19 +493,25 @@ class UNetModel(nn.Module):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
if len(num_res_blocks) != len(channel_mult):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
raise ValueError(
|
||||
"provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult"
|
||||
)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
||||
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
||||
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
||||
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
||||
f"attention will still not be set.")
|
||||
assert all(
|
||||
map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))
|
||||
)
|
||||
print(
|
||||
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
||||
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
||||
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
||||
f"attention will still not be set."
|
||||
)
|
||||
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
@@ -540,11 +542,7 @@ class UNetModel(nn.Module):
|
||||
raise ValueError()
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
)
|
||||
]
|
||||
[TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
|
||||
)
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
@@ -571,7 +569,7 @@ class UNetModel(nn.Module):
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
# num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
@@ -586,10 +584,17 @@ class UNetModel(nn.Module):
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
if not use_spatial_transformer
|
||||
else SpatialTransformer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth,
|
||||
context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa,
|
||||
use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint,
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
@@ -610,9 +615,7 @@ class UNetModel(nn.Module):
|
||||
down=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||
)
|
||||
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
@@ -626,7 +629,7 @@ class UNetModel(nn.Module):
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
# num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
@@ -643,11 +646,18 @@ class UNetModel(nn.Module):
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
),
|
||||
)
|
||||
if not use_spatial_transformer
|
||||
else SpatialTransformer( # always uses a self-attn
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth,
|
||||
context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn,
|
||||
use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint,
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
@@ -682,7 +692,7 @@ class UNetModel(nn.Module):
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
# num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
@@ -697,10 +707,17 @@ class UNetModel(nn.Module):
|
||||
num_heads=num_heads_upsample,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
if not use_spatial_transformer
|
||||
else SpatialTransformer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth,
|
||||
context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa,
|
||||
use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint,
|
||||
)
|
||||
)
|
||||
if level and i == self.num_res_blocks[level]:
|
||||
@@ -730,10 +747,10 @@ class UNetModel(nn.Module):
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
normalization(ch),
|
||||
conv_nd(dims, model_channels, n_embed, 1),
|
||||
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
normalization(ch),
|
||||
conv_nd(dims, model_channels, n_embed, 1),
|
||||
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
|
||||
def convert_to_fp16(self):
|
||||
"""
|
||||
@@ -751,7 +768,7 @@ class UNetModel(nn.Module):
|
||||
self.middle_block.apply(convert_module_to_f32)
|
||||
self.output_blocks.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
||||
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
|
@@ -1,8 +1,8 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
|
||||
from ldm.util import default
|
||||
|
||||
@@ -14,37 +14,41 @@ class AbstractLowScaleModel(nn.Module):
|
||||
if noise_schedule_config is not None:
|
||||
self.register_schedule(**noise_schedule_config)
|
||||
|
||||
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
||||
cosine_s=cosine_s)
|
||||
alphas = 1. - betas
|
||||
def register_schedule(
|
||||
self, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
|
||||
):
|
||||
betas = make_beta_schedule(
|
||||
beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s
|
||||
)
|
||||
alphas = 1.0 - betas
|
||||
alphas_cumprod = np.cumprod(alphas, axis=0)
|
||||
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||||
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
||||
|
||||
timesteps, = betas.shape
|
||||
(timesteps,) = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
||||
assert alphas_cumprod.shape[0] == self.num_timesteps, "alphas have to be defined for each timestep"
|
||||
|
||||
to_torch = partial(torch.tensor, dtype=torch.float32)
|
||||
|
||||
self.register_buffer('betas', to_torch(betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
||||
self.register_buffer("betas", to_torch(betas))
|
||||
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
||||
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
||||
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
||||
self.register_buffer("sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)))
|
||||
self.register_buffer("log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)))
|
||||
self.register_buffer("sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod)))
|
||||
self.register_buffer("sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1)))
|
||||
|
||||
def q_sample(self, x_start, t, noise=None):
|
||||
noise = default(noise, lambda: torch.randn_like(x_start))
|
||||
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
||||
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
||||
return (
|
||||
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
||||
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return x, None
|
||||
@@ -76,6 +80,3 @@ class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
||||
assert isinstance(noise_level, torch.Tensor)
|
||||
z = self.q_sample(x, noise_level)
|
||||
return z, noise_level
|
||||
|
||||
|
||||
|
||||
|
@@ -8,7 +8,6 @@
|
||||
# thanks!
|
||||
|
||||
import math
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -19,10 +18,10 @@ from ldm.util import instantiate_from_config
|
||||
|
||||
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if schedule == "linear":
|
||||
betas = (torch.linspace(linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64)**2)
|
||||
betas = torch.linspace(linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64) ** 2
|
||||
|
||||
elif schedule == "cosine":
|
||||
timesteps = (torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s)
|
||||
timesteps = torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
||||
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||||
alphas = torch.cos(alphas).pow(2)
|
||||
alphas = alphas / alphas[0]
|
||||
@@ -32,18 +31,18 @@ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2,
|
||||
elif schedule == "sqrt_linear":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||
elif schedule == "sqrt":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)**0.5
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
||||
else:
|
||||
raise ValueError(f"schedule '{schedule}' unknown.")
|
||||
return betas.numpy()
|
||||
|
||||
|
||||
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||||
if ddim_discr_method == 'uniform':
|
||||
if ddim_discr_method == "uniform":
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||
elif ddim_discr_method == 'quad':
|
||||
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps))**2).astype(int)
|
||||
elif ddim_discr_method == "quad":
|
||||
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2).astype(int)
|
||||
else:
|
||||
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||||
|
||||
@@ -51,7 +50,7 @@ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timestep
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
steps_out = ddim_timesteps + 1
|
||||
if verbose:
|
||||
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||||
print(f"Selected timesteps for ddim sampler: {steps_out}")
|
||||
return steps_out
|
||||
|
||||
|
||||
@@ -63,9 +62,11 @@ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||||
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||||
if verbose:
|
||||
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||||
print(f'For the chosen value of eta, which is {eta}, '
|
||||
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||||
print(f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}")
|
||||
print(
|
||||
f"For the chosen value of eta, which is {eta}, "
|
||||
f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
|
||||
)
|
||||
return sigmas, alphas, alphas_prev
|
||||
|
||||
|
||||
@@ -106,6 +107,7 @@ def checkpoint(func, inputs, params, flag):
|
||||
"""
|
||||
if flag:
|
||||
from torch.utils.checkpoint import checkpoint as torch_checkpoint
|
||||
|
||||
return torch_checkpoint(func, *inputs)
|
||||
# args = tuple(inputs) + tuple(params)
|
||||
# return CheckpointFunction.apply(func, len(inputs), *args)
|
||||
@@ -114,7 +116,6 @@ def checkpoint(func, inputs, params, flag):
|
||||
|
||||
|
||||
class CheckpointFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, run_function, length, *args):
|
||||
ctx.run_function = run_function
|
||||
@@ -123,7 +124,7 @@ class CheckpointFunction(torch.autograd.Function):
|
||||
ctx.gpu_autocast_kwargs = {
|
||||
"enabled": torch.is_autocast_enabled(),
|
||||
"dtype": torch.get_autocast_gpu_dtype(),
|
||||
"cache_enabled": torch.is_autocast_cache_enabled()
|
||||
"cache_enabled": torch.is_autocast_cache_enabled(),
|
||||
}
|
||||
with torch.no_grad():
|
||||
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||||
@@ -132,8 +133,7 @@ class CheckpointFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def backward(ctx, *output_grads):
|
||||
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||
with torch.enable_grad(), \
|
||||
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
||||
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
@@ -162,14 +162,15 @@ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
||||
"""
|
||||
if not repeat_only:
|
||||
half = dim // 2
|
||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) /
|
||||
half).to(device=timesteps.device)
|
||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
||||
device=timesteps.device
|
||||
)
|
||||
args = timesteps[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
else:
|
||||
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
||||
embedding = repeat(timesteps, "b -> b d", d=dim)
|
||||
return embedding
|
||||
|
||||
|
||||
@@ -210,13 +211,11 @@ def normalization(channels):
|
||||
|
||||
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
||||
class SiLU(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class GroupNorm32(nn.GroupNorm):
|
||||
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type(x.dtype)
|
||||
|
||||
@@ -255,7 +254,6 @@ def avg_pool_nd(dims, *args, **kwargs):
|
||||
|
||||
|
||||
class HybridConditioner(nn.Module):
|
||||
|
||||
def __init__(self, c_concat_config, c_crossattn_config):
|
||||
super().__init__()
|
||||
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
||||
@@ -264,7 +262,7 @@ class HybridConditioner(nn.Module):
|
||||
def forward(self, c_concat, c_crossattn):
|
||||
c_concat = self.concat_conditioner(c_concat)
|
||||
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
||||
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
||||
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
|
||||
|
||||
|
||||
def noise_like(shape, device, repeat=False):
|
||||
|
Reference in New Issue
Block a user