mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-02 15:47:14 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -1,21 +1,26 @@
|
||||
import argparse, os, sys, glob, datetime, yaml
|
||||
import torch
|
||||
import argparse
|
||||
import datetime
|
||||
import glob
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from tqdm import trange
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.util import instantiate_from_config
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from tqdm import trange
|
||||
|
||||
rescale = lambda x: (x + 1.0) / 2.0
|
||||
|
||||
rescale = lambda x: (x + 1.) / 2.
|
||||
|
||||
def custom_to_pil(x):
|
||||
x = x.detach().cpu()
|
||||
x = torch.clamp(x, -1., 1.)
|
||||
x = (x + 1.) / 2.
|
||||
x = torch.clamp(x, -1.0, 1.0)
|
||||
x = (x + 1.0) / 2.0
|
||||
x = x.permute(1, 2, 0).numpy()
|
||||
x = (255 * x).astype(np.uint8)
|
||||
x = Image.fromarray(x)
|
||||
@@ -51,49 +56,51 @@ def logs2pil(logs, keys=["sample"]):
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def convsample(model, shape, return_intermediates=True,
|
||||
verbose=True,
|
||||
make_prog_row=False):
|
||||
|
||||
|
||||
def convsample(model, shape, return_intermediates=True, verbose=True, make_prog_row=False):
|
||||
if not make_prog_row:
|
||||
return model.p_sample_loop(None, shape,
|
||||
return_intermediates=return_intermediates, verbose=verbose)
|
||||
return model.p_sample_loop(None, shape, return_intermediates=return_intermediates, verbose=verbose)
|
||||
else:
|
||||
return model.progressive_denoising(
|
||||
None, shape, verbose=True
|
||||
)
|
||||
return model.progressive_denoising(None, shape, verbose=True)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def convsample_ddim(model, steps, shape, eta=1.0
|
||||
):
|
||||
def convsample_ddim(model, steps, shape, eta=1.0):
|
||||
ddim = DDIMSampler(model)
|
||||
bs = shape[0]
|
||||
shape = shape[1:]
|
||||
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, eta=eta, verbose=False,)
|
||||
samples, intermediates = ddim.sample(
|
||||
steps,
|
||||
batch_size=bs,
|
||||
shape=shape,
|
||||
eta=eta,
|
||||
verbose=False,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def make_convolutional_sample(model, batch_size, vanilla=False, custom_steps=None, eta=1.0,):
|
||||
|
||||
|
||||
def make_convolutional_sample(
|
||||
model,
|
||||
batch_size,
|
||||
vanilla=False,
|
||||
custom_steps=None,
|
||||
eta=1.0,
|
||||
):
|
||||
log = dict()
|
||||
|
||||
shape = [batch_size,
|
||||
model.model.diffusion_model.in_channels,
|
||||
model.model.diffusion_model.image_size,
|
||||
model.model.diffusion_model.image_size]
|
||||
shape = [
|
||||
batch_size,
|
||||
model.model.diffusion_model.in_channels,
|
||||
model.model.diffusion_model.image_size,
|
||||
model.model.diffusion_model.image_size,
|
||||
]
|
||||
|
||||
with model.ema_scope("Plotting"):
|
||||
t0 = time.time()
|
||||
if vanilla:
|
||||
sample, progrow = convsample(model, shape,
|
||||
make_prog_row=True)
|
||||
sample, progrow = convsample(model, shape, make_prog_row=True)
|
||||
else:
|
||||
sample, intermediates = convsample_ddim(model, steps=custom_steps, shape=shape,
|
||||
eta=eta)
|
||||
sample, intermediates = convsample_ddim(model, steps=custom_steps, shape=shape, eta=eta)
|
||||
|
||||
t1 = time.time()
|
||||
|
||||
@@ -101,32 +108,32 @@ def make_convolutional_sample(model, batch_size, vanilla=False, custom_steps=Non
|
||||
|
||||
log["sample"] = x_sample
|
||||
log["time"] = t1 - t0
|
||||
log['throughput'] = sample.shape[0] / (t1 - t0)
|
||||
log["throughput"] = sample.shape[0] / (t1 - t0)
|
||||
print(f'Throughput for this batch: {log["throughput"]}')
|
||||
return log
|
||||
|
||||
|
||||
def run(model, logdir, batch_size=50, vanilla=False, custom_steps=None, eta=None, n_samples=50000, nplog=None):
|
||||
if vanilla:
|
||||
print(f'Using Vanilla DDPM sampling with {model.num_timesteps} sampling steps.')
|
||||
print(f"Using Vanilla DDPM sampling with {model.num_timesteps} sampling steps.")
|
||||
else:
|
||||
print(f'Using DDIM sampling with {custom_steps} sampling steps and eta={eta}')
|
||||
|
||||
print(f"Using DDIM sampling with {custom_steps} sampling steps and eta={eta}")
|
||||
|
||||
tstart = time.time()
|
||||
n_saved = len(glob.glob(os.path.join(logdir,'*.png')))-1
|
||||
n_saved = len(glob.glob(os.path.join(logdir, "*.png"))) - 1
|
||||
# path = logdir
|
||||
if model.cond_stage_model is None:
|
||||
all_images = []
|
||||
|
||||
print(f"Running unconditional sampling for {n_samples} samples")
|
||||
for _ in trange(n_samples // batch_size, desc="Sampling Batches (unconditional)"):
|
||||
logs = make_convolutional_sample(model, batch_size=batch_size,
|
||||
vanilla=vanilla, custom_steps=custom_steps,
|
||||
eta=eta)
|
||||
logs = make_convolutional_sample(
|
||||
model, batch_size=batch_size, vanilla=vanilla, custom_steps=custom_steps, eta=eta
|
||||
)
|
||||
n_saved = save_logs(logs, logdir, n_saved=n_saved, key="sample")
|
||||
all_images.extend([custom_to_np(logs["sample"])])
|
||||
if n_saved >= n_samples:
|
||||
print(f'Finish after generating {n_saved} samples')
|
||||
print(f"Finish after generating {n_saved} samples")
|
||||
break
|
||||
all_img = np.concatenate(all_images, axis=0)
|
||||
all_img = all_img[:n_samples]
|
||||
@@ -135,7 +142,7 @@ def run(model, logdir, batch_size=50, vanilla=False, custom_steps=None, eta=None
|
||||
np.savez(nppath, all_img)
|
||||
|
||||
else:
|
||||
raise NotImplementedError('Currently only sampling for unconditional models supported.')
|
||||
raise NotImplementedError("Currently only sampling for unconditional models supported.")
|
||||
|
||||
print(f"sampling of {n_saved} images finished in {(time.time() - tstart) / 60.:.2f} minutes.")
|
||||
|
||||
@@ -168,58 +175,33 @@ def get_parser():
|
||||
nargs="?",
|
||||
help="load from logdir or checkpoint in logdir",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-n",
|
||||
"--n_samples",
|
||||
type=int,
|
||||
nargs="?",
|
||||
help="number of samples to draw",
|
||||
default=50000
|
||||
)
|
||||
parser.add_argument("-n", "--n_samples", type=int, nargs="?", help="number of samples to draw", default=50000)
|
||||
parser.add_argument(
|
||||
"-e",
|
||||
"--eta",
|
||||
type=float,
|
||||
nargs="?",
|
||||
help="eta for ddim sampling (0.0 yields deterministic sampling)",
|
||||
default=1.0
|
||||
default=1.0,
|
||||
)
|
||||
parser.add_argument(
|
||||
"-v",
|
||||
"--vanilla_sample",
|
||||
default=False,
|
||||
action='store_true',
|
||||
action="store_true",
|
||||
help="vanilla sampling (default option is DDIM sampling)?",
|
||||
)
|
||||
parser.add_argument("-l", "--logdir", type=str, nargs="?", help="extra logdir", default="none")
|
||||
parser.add_argument(
|
||||
"-l",
|
||||
"--logdir",
|
||||
type=str,
|
||||
nargs="?",
|
||||
help="extra logdir",
|
||||
default="none"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--custom_steps",
|
||||
type=int,
|
||||
nargs="?",
|
||||
help="number of steps for ddim and fastdpm sampling",
|
||||
default=50
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
nargs="?",
|
||||
help="the bs",
|
||||
default=10
|
||||
"-c", "--custom_steps", type=int, nargs="?", help="number of steps for ddim and fastdpm sampling", default=50
|
||||
)
|
||||
parser.add_argument("--batch_size", type=int, nargs="?", help="the bs", default=10)
|
||||
return parser
|
||||
|
||||
|
||||
def load_model_from_config(config, sd):
|
||||
model = instantiate_from_config(config)
|
||||
model.load_state_dict(sd,strict=False)
|
||||
model.load_state_dict(sd, strict=False)
|
||||
model.cuda()
|
||||
model.eval()
|
||||
return model
|
||||
@@ -233,8 +215,7 @@ def load_model(config, ckpt, gpu, eval_mode):
|
||||
else:
|
||||
pl_sd = {"state_dict": None}
|
||||
global_step = None
|
||||
model = load_model_from_config(config.model,
|
||||
pl_sd["state_dict"])
|
||||
model = load_model_from_config(config.model, pl_sd["state_dict"])
|
||||
|
||||
return model, global_step
|
||||
|
||||
@@ -253,9 +234,9 @@ if __name__ == "__main__":
|
||||
if os.path.isfile(opt.resume):
|
||||
# paths = opt.resume.split("/")
|
||||
try:
|
||||
logdir = '/'.join(opt.resume.split('/')[:-1])
|
||||
logdir = "/".join(opt.resume.split("/")[:-1])
|
||||
# idx = len(paths)-paths[::-1].index("logs")+1
|
||||
print(f'Logdir is {logdir}')
|
||||
print(f"Logdir is {logdir}")
|
||||
except ValueError:
|
||||
paths = opt.resume.split("/")
|
||||
idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt
|
||||
@@ -278,7 +259,8 @@ if __name__ == "__main__":
|
||||
|
||||
if opt.logdir != "none":
|
||||
locallog = logdir.split(os.sep)[-1]
|
||||
if locallog == "": locallog = logdir.split(os.sep)[-2]
|
||||
if locallog == "":
|
||||
locallog = logdir.split(os.sep)[-2]
|
||||
print(f"Switching logdir from '{logdir}' to '{os.path.join(opt.logdir, locallog)}'")
|
||||
logdir = os.path.join(opt.logdir, locallog)
|
||||
|
||||
@@ -301,13 +283,19 @@ if __name__ == "__main__":
|
||||
sampling_file = os.path.join(logdir, "sampling_config.yaml")
|
||||
sampling_conf = vars(opt)
|
||||
|
||||
with open(sampling_file, 'w') as f:
|
||||
with open(sampling_file, "w") as f:
|
||||
yaml.dump(sampling_conf, f, default_flow_style=False)
|
||||
print(sampling_conf)
|
||||
|
||||
|
||||
run(model, imglogdir, eta=opt.eta,
|
||||
vanilla=opt.vanilla_sample, n_samples=opt.n_samples, custom_steps=opt.custom_steps,
|
||||
batch_size=opt.batch_size, nplog=numpylogdir)
|
||||
run(
|
||||
model,
|
||||
imglogdir,
|
||||
eta=opt.eta,
|
||||
vanilla=opt.vanilla_sample,
|
||||
n_samples=opt.n_samples,
|
||||
custom_steps=opt.custom_steps,
|
||||
batch_size=opt.batch_size,
|
||||
nplog=numpylogdir,
|
||||
)
|
||||
|
||||
print("done.")
|
||||
|
Reference in New Issue
Block a user