[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,6 +1,7 @@
import bitsandbytes as bnb
import torch.nn as nn
import torch
import torch.nn as nn
class Linear8bit(nn.Linear):
def __init__(
@@ -12,11 +13,9 @@ class Linear8bit(nn.Linear):
memory_efficient_backward=False,
threshold=6.0,
weight_data=None,
bias_data=None
bias_data=None,
):
super(Linear8bit, self).__init__(
input_features, output_features, bias
)
super(Linear8bit, self).__init__(input_features, output_features, bias)
self.state = bnb.MatmulLtState()
self.bias = bias_data
self.state.threshold = threshold
@@ -24,13 +23,12 @@ class Linear8bit(nn.Linear):
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.register_parameter("SCB", nn.Parameter(torch.empty(0), requires_grad=False))
self.weight = weight_data
self.quant()
def quant(self):
def quant(self):
weight = self.weight.data.contiguous().half().cuda()
CB, _, SCB, _, _ = bnb.functional.double_quant(weight)
delattr(self, "weight")
@@ -41,32 +39,34 @@ class Linear8bit(nn.Linear):
def forward(self, x):
self.state.is_training = self.training
if self.bias is not None and self.bias.dtype != torch.float16:
self.bias.data = self.bias.data.half()
self.state.CB = self.weight.data
self.state.SCB = self.SCB.data
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
del self.state.CxB
return out
def replace_module(model):
for name, module in model.named_children():
if len(list(module.children())) > 0:
replace_module(module)
if isinstance(module, nn.Linear) and "out_proj" not in name:
if isinstance(module, nn.Linear) and "out_proj" not in name:
model._modules[name] = Linear8bit(
input_features=module.in_features,
output_features=module.out_features,
threshold=6.0,
weight_data=module.weight,
bias_data=module.bias,
)
input_features=module.in_features,
output_features=module.out_features,
threshold=6.0,
weight_data=module.weight,
bias_data=module.bias,
)
return model
def getModelSize(model):
param_size = 0
param_sum = 0
@@ -79,5 +79,5 @@ def getModelSize(model):
buffer_size += buffer.nelement() * buffer.element_size()
buffer_sum += buffer.nelement()
all_size = (param_size + buffer_size) / 1024 / 1024
print('Model Size: {:.3f}MB'.format(all_size))
print("Model Size: {:.3f}MB".format(all_size))
return (param_size, param_sum, buffer_size, buffer_sum, all_size)