[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -30,23 +30,19 @@ LEARNING_RATE = 1e-3
def build_dataloader(batch_size: int, coordinator: DistCoordinator, plugin: DPPluginBase):
# transform
transform_train = transforms.Compose(
[transforms.Pad(4),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32),
transforms.ToTensor()])
[transforms.Pad(4), transforms.RandomHorizontalFlip(), transforms.RandomCrop(32), transforms.ToTensor()]
)
transform_test = transforms.ToTensor()
# CIFAR-10 dataset
data_path = os.environ.get('DATA', './data')
data_path = os.environ.get("DATA", "./data")
with coordinator.priority_execution():
train_dataset = torchvision.datasets.CIFAR10(root=data_path,
train=True,
transform=transform_train,
download=True)
test_dataset = torchvision.datasets.CIFAR10(root=data_path,
train=False,
transform=transform_test,
download=True)
train_dataset = torchvision.datasets.CIFAR10(
root=data_path, train=True, transform=transform_train, download=True
)
test_dataset = torchvision.datasets.CIFAR10(
root=data_path, train=False, transform=transform_test, download=True
)
# Data loader
train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
@@ -70,14 +66,21 @@ def evaluate(model: nn.Module, test_dataloader: DataLoader, coordinator: DistCoo
dist.all_reduce(total)
accuracy = correct.item() / total.item()
if coordinator.is_master():
print(f'Accuracy of the model on the test images: {accuracy * 100:.2f} %')
print(f"Accuracy of the model on the test images: {accuracy * 100:.2f} %")
return accuracy
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, criterion: nn.Module, train_dataloader: DataLoader,
booster: Booster, coordinator: DistCoordinator):
def train_epoch(
epoch: int,
model: nn.Module,
optimizer: Optimizer,
criterion: nn.Module,
train_dataloader: DataLoader,
booster: Booster,
coordinator: DistCoordinator,
):
model.train()
with tqdm(train_dataloader, desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]', disable=not coordinator.is_master()) as pbar:
with tqdm(train_dataloader, desc=f"Epoch [{epoch + 1}/{NUM_EPOCHS}]", disable=not coordinator.is_master()) as pbar:
for images, labels in pbar:
images = images.cuda()
labels = labels.cuda()
@@ -91,7 +94,7 @@ def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, criterion: n
optimizer.zero_grad()
# Print log info
pbar.set_postfix({'loss': loss.item()})
pbar.set_postfix({"loss": loss.item()})
def main():
@@ -100,19 +103,20 @@ def main():
# ==============================
parser = argparse.ArgumentParser()
# FIXME(ver217): gemini is not supported resnet now
parser.add_argument('-p',
'--plugin',
type=str,
default='torch_ddp',
choices=['torch_ddp', 'torch_ddp_fp16', 'low_level_zero', 'gemini'],
help="plugin to use")
parser.add_argument('-r', '--resume', type=int, default=-1, help="resume from the epoch's checkpoint")
parser.add_argument('-c', '--checkpoint', type=str, default='./checkpoint', help="checkpoint directory")
parser.add_argument('-i', '--interval', type=int, default=5, help="interval of saving checkpoint")
parser.add_argument('--target_acc',
type=float,
default=None,
help="target accuracy. Raise exception if not reached")
parser.add_argument(
"-p",
"--plugin",
type=str,
default="torch_ddp",
choices=["torch_ddp", "torch_ddp_fp16", "low_level_zero", "gemini"],
help="plugin to use",
)
parser.add_argument("-r", "--resume", type=int, default=-1, help="resume from the epoch's checkpoint")
parser.add_argument("-c", "--checkpoint", type=str, default="./checkpoint", help="checkpoint directory")
parser.add_argument("-i", "--interval", type=int, default=5, help="interval of saving checkpoint")
parser.add_argument(
"--target_acc", type=float, default=None, help="target accuracy. Raise exception if not reached"
)
args = parser.parse_args()
# ==============================
@@ -136,13 +140,13 @@ def main():
# Instantiate Plugin and Booster
# ==============================
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
elif args.plugin == "gemini":
plugin = GeminiPlugin(initial_scale=2**5)
elif args.plugin == 'low_level_zero':
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
booster = Booster(plugin=plugin, **booster_kwargs)
@@ -168,18 +172,17 @@ def main():
# ==============================
# Boost with ColossalAI
# ==============================
model, optimizer, criterion, _, lr_scheduler = booster.boost(model,
optimizer,
criterion=criterion,
lr_scheduler=lr_scheduler)
model, optimizer, criterion, _, lr_scheduler = booster.boost(
model, optimizer, criterion=criterion, lr_scheduler=lr_scheduler
)
# ==============================
# Resume from checkpoint
# ==============================
if args.resume >= 0:
booster.load_model(model, f'{args.checkpoint}/model_{args.resume}.pth')
booster.load_optimizer(optimizer, f'{args.checkpoint}/optimizer_{args.resume}.pth')
booster.load_lr_scheduler(lr_scheduler, f'{args.checkpoint}/lr_scheduler_{args.resume}.pth')
booster.load_model(model, f"{args.checkpoint}/model_{args.resume}.pth")
booster.load_optimizer(optimizer, f"{args.checkpoint}/optimizer_{args.resume}.pth")
booster.load_lr_scheduler(lr_scheduler, f"{args.checkpoint}/lr_scheduler_{args.resume}.pth")
# ==============================
# Train model
@@ -191,14 +194,14 @@ def main():
# save checkpoint
if args.interval > 0 and (epoch + 1) % args.interval == 0:
booster.save_model(model, f'{args.checkpoint}/model_{epoch + 1}.pth')
booster.save_optimizer(optimizer, f'{args.checkpoint}/optimizer_{epoch + 1}.pth')
booster.save_lr_scheduler(lr_scheduler, f'{args.checkpoint}/lr_scheduler_{epoch + 1}.pth')
booster.save_model(model, f"{args.checkpoint}/model_{epoch + 1}.pth")
booster.save_optimizer(optimizer, f"{args.checkpoint}/optimizer_{epoch + 1}.pth")
booster.save_lr_scheduler(lr_scheduler, f"{args.checkpoint}/lr_scheduler_{epoch + 1}.pth")
accuracy = evaluate(model, test_dataloader, coordinator)
if args.target_acc is not None:
assert accuracy >= args.target_acc, f'Accuracy {accuracy} is lower than target accuracy {args.target_acc}'
assert accuracy >= args.target_acc, f"Accuracy {accuracy} is lower than target accuracy {args.target_acc}"
if __name__ == '__main__':
if __name__ == "__main__":
main()