[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -25,18 +25,16 @@ def format_num(num: int, bytes=False):
def get_data_batch(batch_size, num_labels, num_channels=3, height=224, width=224):
pixel_values = torch.randn(batch_size,
num_channels,
height,
width,
device=torch.cuda.current_device(),
dtype=torch.float)
pixel_values = torch.randn(
batch_size, num_channels, height, width, device=torch.cuda.current_device(), dtype=torch.float
)
labels = torch.randint(0, num_labels, (batch_size,), device=torch.cuda.current_device(), dtype=torch.int64)
return dict(pixel_values=pixel_values, labels=labels)
def colo_memory_cap(size_in_GB):
from colossalai.utils import colo_device_memory_capacity, colo_set_process_memory_fraction, get_current_device
cuda_capacity = colo_device_memory_capacity(get_current_device())
if size_in_GB * (1024**3) < cuda_capacity:
colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity)
@@ -44,7 +42,6 @@ def colo_memory_cap(size_in_GB):
def main():
args = parse_benchmark_args()
# Launch ColossalAI
@@ -75,22 +72,24 @@ def main():
# Set plugin
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
elif args.plugin == "gemini":
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
elif args.plugin == 'low_level_zero':
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
elif args.plugin == 'hybrid_parallel':
plugin = HybridParallelPlugin(tp_size=2,
pp_size=2,
num_microbatches=None,
microbatch_size=1,
enable_all_optimization=True,
precision='fp16',
initial_scale=1)
elif args.plugin == "hybrid_parallel":
plugin = HybridParallelPlugin(
tp_size=2,
pp_size=2,
num_microbatches=None,
microbatch_size=1,
enable_all_optimization=True,
precision="fp16",
initial_scale=1,
)
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
# Set optimizer
@@ -119,12 +118,9 @@ def main():
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
# run pipeline forward backward
batch = iter([batch])
outputs = booster.execute_pipeline(batch,
model,
criterion,
optimizer,
return_loss=True,
return_outputs=True)
outputs = booster.execute_pipeline(
batch, model, criterion, optimizer, return_loss=True, return_outputs=True
)
else:
outputs = model(**batch)
loss = criterion(outputs, None)
@@ -146,7 +142,8 @@ def main():
f"plugin: {args.plugin}, "
f"throughput: {throughput}, "
f"maximum memory usage per gpu: {max_mem}.",
ranks=[0])
ranks=[0],
)
torch.cuda.empty_cache()