[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -32,9 +32,7 @@ DATASET_LEN = 1000
class RandintDataset(Dataset):
def __init__(self, dataset_length: int, sequence_length: int, vocab_size: int, n_class: int):
self._sequence_length = sequence_length
self._vocab_size = vocab_size
self._n_class = n_class
@@ -42,10 +40,13 @@ class RandintDataset(Dataset):
self._datas = torch.randint(
low=0,
high=self._vocab_size,
size=(self._dataset_length, self._sequence_length,),
size=(
self._dataset_length,
self._sequence_length,
),
dtype=torch.long,
)
self._labels = torch.randint(low=0, high=self._n_class, size=(self._dataset_length, 1), dtype=torch.long)
self._labels = torch.randint(low=0, high=self._n_class, size=(self._dataset_length, 1), dtype=torch.long)
def __len__(self):
return self._dataset_length
@@ -59,13 +60,15 @@ def main():
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run")
parser.add_argument('-p',
'--plugin',
type=str,
default='torch_ddp',
choices=['torch_ddp', 'torch_ddp_fp16', 'gemini', 'low_level_zero'],
help="plugin to use")
parser.add_argument("-t", "--task", default="mrpc", help="GLUE task to run")
parser.add_argument(
"-p",
"--plugin",
type=str,
default="torch_ddp",
choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero"],
help="plugin to use",
)
parser.add_argument(
"--model_type",
type=str,
@@ -88,13 +91,13 @@ def main():
# Instantiate Plugin and Booster
# ==============================
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, initial_scale=2**5)
elif args.plugin == 'low_level_zero':
elif args.plugin == "gemini":
plugin = GeminiPlugin(placement_policy="cuda", strict_ddp_mode=True, initial_scale=2**5)
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
booster = Booster(plugin=plugin, **booster_kwargs)
@@ -103,10 +106,9 @@ def main():
# Prepare Dataloader
# ==============================
train_dataset = RandintDataset(dataset_length=DATASET_LEN,
sequence_length=SEQ_LEN,
vocab_size=VOCAB_SIZE,
n_class=NUM_LABELS)
train_dataset = RandintDataset(
dataset_length=DATASET_LEN, sequence_length=SEQ_LEN, vocab_size=VOCAB_SIZE, n_class=NUM_LABELS
)
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE)
# ====================================
@@ -159,16 +161,12 @@ def main():
# Benchmark model
# ==============================
results = benchmark(model,
booster,
optimizer,
lr_scheduler,
train_dataloader,
criterion=criterion,
epoch_num=NUM_EPOCHS)
results = benchmark(
model, booster, optimizer, lr_scheduler, train_dataloader, criterion=criterion, epoch_num=NUM_EPOCHS
)
coordinator.print_on_master(results)
if __name__ == '__main__':
if __name__ == "__main__":
main()

View File

@@ -112,8 +112,9 @@ def benchmark(
start_time = time()
for epoch in range(epoch_num):
with tqdm(dataloader, desc=f'Epoch [{epoch + 1}/{epoch_num}]',
disable=not DistCoordinator().is_master()) as pbar:
with tqdm(
dataloader, desc=f"Epoch [{epoch + 1}/{epoch_num}]", disable=not DistCoordinator().is_master()
) as pbar:
for data in pbar:
inputs, labels = data[0].cuda(), data[1].cuda()
outputs = model(inputs, labels=labels)
@@ -137,7 +138,9 @@ def benchmark(
}
logger.info(fmt({f"Memory results (batch_size={batch_size})": memory[f"batch_size_{batch_size}"]}))
throughput[f"batch_size_{batch_size}"] = {"throughput:": "{:.1f}".format(all_sample * DistCoordinator().world_size / (end_time - start_time))}
throughput[f"batch_size_{batch_size}"] = {
"throughput:": "{:.1f}".format(all_sample * DistCoordinator().world_size / (end_time - start_time))
}
logger.info(fmt({f"Throughput results (batch_size={batch_size})": throughput[f"batch_size_{batch_size}"]}))
results["throughput"] = throughput

View File

@@ -5,7 +5,6 @@ from colossalai.booster.plugin.dp_plugin_base import DPPluginBase
class GLUEDataBuilder:
task_text_field_map = {
"cola": ["sentence"],
"sst2": ["sentence"],
@@ -84,10 +83,9 @@ class GLUEDataBuilder:
AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True)
def train_dataloader(self):
return self.plugin.prepare_dataloader(self.dataset["train"],
batch_size=self.train_batch_size,
shuffle=True,
drop_last=True)
return self.plugin.prepare_dataloader(
self.dataset["train"], batch_size=self.train_batch_size, shuffle=True, drop_last=True
)
def val_dataloader(self):
if len(self.eval_splits) == 1:
@@ -108,7 +106,6 @@ class GLUEDataBuilder:
]
def convert_to_features(self, example_batch):
# Either encode single sentence or sentence pairs
if len(self.text_fields) > 1:
texts_or_text_pairs = list(zip(example_batch[self.text_fields[0]], example_batch[self.text_fields[1]]))
@@ -116,10 +113,9 @@ class GLUEDataBuilder:
texts_or_text_pairs = example_batch[self.text_fields[0]]
# Tokenize the text/text pairs
features = self.tokenizer.batch_encode_plus(texts_or_text_pairs,
max_length=self.max_seq_length,
padding='max_length',
truncation=True)
features = self.tokenizer.batch_encode_plus(
texts_or_text_pairs, max_length=self.max_seq_length, padding="max_length", truncation=True
)
# Rename label to labels to make it easier to pass to model forward
features["labels"] = example_batch["label"]

View File

@@ -1,5 +1,4 @@
import argparse
from contextlib import nullcontext
from typing import Callable, List, Union
import evaluate
@@ -7,7 +6,7 @@ import torch
import torch.distributed as dist
import torch.nn as nn
from data import GLUEDataBuilder
from torch.optim import Adam, Optimizer
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
@@ -22,7 +21,6 @@ import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
@@ -109,7 +107,7 @@ def evaluate_model(
results = metric.compute()
dist.all_reduce(accum_loss.div_(len(dataloader)))
if coordinator.is_master() and results is not None:
results['loss'] = accum_loss.item() / coordinator.world_size
results["loss"] = accum_loss.item() / coordinator.world_size
return results
@@ -120,13 +118,20 @@ def evaluate_model(
final_results = {}
for split, sub_loader in zip(eval_splits, test_dataloader):
results = evaluate_subset(sub_loader)
final_results.update({f'{k}_{split}': v for k, v in results.items()})
final_results.update({f"{k}_{split}": v for k, v in results.items()})
return final_results
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, _criterion: Callable, lr_scheduler: LRScheduler,
train_dataloader: DataLoader, booster: Booster, coordinator: DistCoordinator):
def train_epoch(
epoch: int,
model: nn.Module,
optimizer: Optimizer,
_criterion: Callable,
lr_scheduler: LRScheduler,
train_dataloader: DataLoader,
booster: Booster,
coordinator: DistCoordinator,
):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
print_flag = (not use_pipeline and coordinator.is_master()) or (use_pipeline and is_pp_last_stage)
@@ -135,20 +140,17 @@ def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, _criterion:
model.train()
optimizer.zero_grad()
train_dataloader_iter = iter(train_dataloader)
with tqdm(range(total_step), desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]', disable=not print_flag) as pbar:
with tqdm(range(total_step), desc=f"Epoch [{epoch + 1}/{NUM_EPOCHS}]", disable=not print_flag) as pbar:
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(train_dataloader_iter,
model,
_criterion,
optimizer,
return_loss=True,
return_outputs=True)
outputs = booster.execute_pipeline(
train_dataloader_iter, model, _criterion, optimizer, return_loss=True, return_outputs=True
)
# Backward and optimize
if is_pp_last_stage:
loss = outputs['loss']
pbar.set_postfix({'loss': loss.item()})
loss = outputs["loss"]
pbar.set_postfix({"loss": loss.item()})
else:
data = next(train_dataloader_iter)
data = move_to_cuda(data)
@@ -156,7 +158,7 @@ def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, _criterion:
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({'loss': loss.item()})
pbar.set_postfix({"loss": loss.item()})
optimizer.step()
optimizer.zero_grad()
@@ -168,26 +170,28 @@ def main():
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run")
parser.add_argument('-p',
'--plugin',
type=str,
default='torch_ddp',
choices=['torch_ddp', 'torch_ddp_fp16', 'gemini', 'low_level_zero', 'hybrid_parallel'],
help="plugin to use")
parser.add_argument("-t", "--task", default="mrpc", help="GLUE task to run")
parser.add_argument(
"-p",
"--plugin",
type=str,
default="torch_ddp",
choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero", "hybrid_parallel"],
help="plugin to use",
)
parser.add_argument(
"--model_type",
type=str,
default="bert",
help="bert or albert",
)
parser.add_argument('--target_f1', type=float, default=None, help="target f1 score. Raise exception if not reached")
parser.add_argument('--use_lazy_init', type=bool, default=False, help="for initiating lazy init context")
parser.add_argument("--target_f1", type=float, default=None, help="target f1 score. Raise exception if not reached")
parser.add_argument("--use_lazy_init", type=bool, default=False, help="for initiating lazy init context")
args = parser.parse_args()
if args.model_type == 'bert':
if args.model_type == "bert":
model_name = "bert-base-uncased"
elif args.model_type == 'albert':
elif args.model_type == "albert":
model_name = "albert-xxlarge-v2"
else:
raise RuntimeError
@@ -204,36 +208,35 @@ def main():
# Instantiate Plugin and Booster
# ==============================
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
elif args.plugin == "gemini":
plugin = GeminiPlugin(initial_scale=2**5)
elif args.plugin == 'low_level_zero':
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
elif args.plugin == 'hybrid_parallel':
elif args.plugin == "hybrid_parallel":
# modify the param accordingly for finetuning test cases
plugin = HybridParallelPlugin(tp_size=1,
pp_size=2,
num_microbatches=None,
microbatch_size=1,
enable_all_optimization=True,
zero_stage=1,
precision='fp16',
initial_scale=1)
plugin = HybridParallelPlugin(
tp_size=1,
pp_size=2,
num_microbatches=None,
microbatch_size=1,
enable_all_optimization=True,
zero_stage=1,
precision="fp16",
initial_scale=1,
)
booster = Booster(plugin=plugin, **booster_kwargs)
# ==============================
# Prepare Dataloader
# ==============================
data_builder = GLUEDataBuilder(model_name,
plugin,
args.task,
train_batch_size=BATCH_SIZE,
eval_batch_size=BATCH_SIZE)
data_builder = GLUEDataBuilder(
model_name, plugin, args.task, train_batch_size=BATCH_SIZE, eval_batch_size=BATCH_SIZE
)
train_dataloader = data_builder.train_dataloader()
test_dataloader = data_builder.test_dataloader()
@@ -283,10 +286,9 @@ def main():
# ==============================
# Boost with ColossalAI
# ==============================
model, optimizer, _criterion, _, lr_scheduler = booster.boost(model,
optimizer,
criterion=_criterion,
lr_scheduler=lr_scheduler)
model, optimizer, _criterion, _, lr_scheduler = booster.boost(
model, optimizer, criterion=_criterion, lr_scheduler=lr_scheduler
)
# ==============================
# Train model
@@ -294,14 +296,22 @@ def main():
for epoch in range(NUM_EPOCHS):
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, train_dataloader, booster, coordinator)
results = evaluate_model(model, _criterion, test_dataloader, data_builder.num_labels, args.task,
data_builder.eval_splits, booster, coordinator)
results = evaluate_model(
model,
_criterion,
test_dataloader,
data_builder.num_labels,
args.task,
data_builder.eval_splits,
booster,
coordinator,
)
if coordinator.is_master():
print(results)
if args.target_f1 is not None and 'f1' in results:
assert results['f1'] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
if args.target_f1 is not None and "f1" in results:
assert results["f1"] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
if __name__ == '__main__':
if __name__ == "__main__":
main()