[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -25,21 +25,22 @@ from colossalai.utils import get_current_device
# ==============================
MODEL_CONFIGS = {
'7b':
LlamaConfig(max_position_embeddings=4096),
'13b':
LlamaConfig(hidden_size=5120,
intermediate_size=13824,
num_hidden_layers=40,
num_attention_heads=40,
max_position_embeddings=4096),
'70b':
LlamaConfig(hidden_size=8192,
intermediate_size=28672,
num_hidden_layers=80,
num_attention_heads=64,
max_position_embeddings=4096,
num_key_value_heads=8),
"7b": LlamaConfig(max_position_embeddings=4096),
"13b": LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
num_hidden_layers=40,
num_attention_heads=40,
max_position_embeddings=4096,
),
"70b": LlamaConfig(
hidden_size=8192,
intermediate_size=28672,
num_hidden_layers=80,
num_attention_heads=64,
max_position_embeddings=4096,
num_key_value_heads=8,
),
}
@@ -48,31 +49,31 @@ def main():
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='7b', help='Model configuration')
parser.add_argument('-p',
'--plugin',
choices=['gemini', 'gemini_auto', 'fsdp', 'fsdp_cpu', '3d', '3d_cpu'],
default='gemini',
help='Choose which plugin to use')
parser.add_argument('-b', '--batch_size', type=int, default=2, help='Batch size')
parser.add_argument('-s', '--num_steps', type=int, default=5, help='Number of steps to run')
parser.add_argument('-i', '--ignore_steps', type=int, default=2, help='Number of steps to ignore')
parser.add_argument('-g', '--grad_checkpoint', action='store_true', help='Use gradient checkpointing')
parser.add_argument('-l', '--max_length', type=int, default=4096, help='Max sequence length')
parser.add_argument('-w',
'--warmup_ratio',
type=float,
default=0.8,
help='warm up ratio of non-model data. Only for gemini-auto')
parser.add_argument('-m', '--memory_limit', type=int, help='Gemini memory limit in mb')
parser.add_argument('-x', '--xformers', action='store_true', help='Use xformers')
parser.add_argument('--shard_param_frac', type=float, default=1.0, help='Shard param fraction. Only for gemini')
parser.add_argument('--offload_optim_frac', type=float, default=0.0, help='Offload optim fraction. Only for gemini')
parser.add_argument('--offload_param_frac', type=float, default=0.0, help='Offload param fraction. Only for gemini')
parser.add_argument('--tp', type=int, default=1, help='Tensor parallel size')
parser.add_argument('--pp', type=int, default=1, help='Pipeline parallel size')
parser.add_argument('--mbs', type=int, default=1)
parser.add_argument('--zero', type=int, default=0)
parser.add_argument("-c", "--config", type=str, default="7b", help="Model configuration")
parser.add_argument(
"-p",
"--plugin",
choices=["gemini", "gemini_auto", "fsdp", "fsdp_cpu", "3d", "3d_cpu"],
default="gemini",
help="Choose which plugin to use",
)
parser.add_argument("-b", "--batch_size", type=int, default=2, help="Batch size")
parser.add_argument("-s", "--num_steps", type=int, default=5, help="Number of steps to run")
parser.add_argument("-i", "--ignore_steps", type=int, default=2, help="Number of steps to ignore")
parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing")
parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length")
parser.add_argument(
"-w", "--warmup_ratio", type=float, default=0.8, help="warm up ratio of non-model data. Only for gemini-auto"
)
parser.add_argument("-m", "--memory_limit", type=int, help="Gemini memory limit in mb")
parser.add_argument("-x", "--xformers", action="store_true", help="Use xformers")
parser.add_argument("--shard_param_frac", type=float, default=1.0, help="Shard param fraction. Only for gemini")
parser.add_argument("--offload_optim_frac", type=float, default=0.0, help="Offload optim fraction. Only for gemini")
parser.add_argument("--offload_param_frac", type=float, default=0.0, help="Offload param fraction. Only for gemini")
parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size")
parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel size")
parser.add_argument("--mbs", type=int, default=1)
parser.add_argument("--zero", type=int, default=0)
args = parser.parse_args()
colossalai.launch_from_torch({})
@@ -85,56 +86,67 @@ def main():
# Initialize Booster
# ==============================
use_empty_init = True
if args.plugin == 'gemini':
plugin = GeminiPlugin(precision='bf16',
shard_param_frac=args.shard_param_frac,
offload_optim_frac=args.offload_optim_frac,
offload_param_frac=args.offload_param_frac)
elif args.plugin == 'gemini_auto':
plugin = GeminiPlugin(placement_policy='auto', precision='bf16', warmup_non_model_data_ratio=args.warmup_ratio)
elif args.plugin == 'fsdp':
if args.plugin == "gemini":
plugin = GeminiPlugin(
precision="bf16",
shard_param_frac=args.shard_param_frac,
offload_optim_frac=args.offload_optim_frac,
offload_param_frac=args.offload_param_frac,
)
elif args.plugin == "gemini_auto":
plugin = GeminiPlugin(placement_policy="auto", precision="bf16", warmup_non_model_data_ratio=args.warmup_ratio)
elif args.plugin == "fsdp":
if use_empty_init:
plugin = TorchFSDPPlugin(
mixed_precision=MixedPrecision(param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16),
mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
),
param_init_fn=empty_init(),
)
else:
plugin = TorchFSDPPlugin(mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16))
elif args.plugin == 'fsdp_cpu':
plugin = TorchFSDPPlugin(
mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
)
)
elif args.plugin == "fsdp_cpu":
if use_empty_init:
plugin = TorchFSDPPlugin(
mixed_precision=MixedPrecision(param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16),
mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
),
cpu_offload=CPUOffload(offload_params=True),
param_init_fn=empty_init(),
)
else:
plugin = TorchFSDPPlugin(mixed_precision=MixedPrecision(param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16),
cpu_offload=CPUOffload(offload_params=True))
elif args.plugin == '3d':
plugin = HybridParallelPlugin(tp_size=args.tp,
pp_size=args.pp,
zero_stage=args.zero,
enable_fused_normalization=True,
num_microbatches=args.mbs,
precision='bf16')
elif args.plugin == '3d_cpu':
plugin = HybridParallelPlugin(tp_size=args.tp,
pp_size=args.pp,
zero_stage=args.zero,
cpu_offload=True,
enable_fused_normalization=True,
num_microbatches=args.mbs,
initial_scale=2**8,
precision='bf16')
plugin = TorchFSDPPlugin(
mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
),
cpu_offload=CPUOffload(offload_params=True),
)
elif args.plugin == "3d":
plugin = HybridParallelPlugin(
tp_size=args.tp,
pp_size=args.pp,
zero_stage=args.zero,
enable_fused_normalization=True,
num_microbatches=args.mbs,
precision="bf16",
)
elif args.plugin == "3d_cpu":
plugin = HybridParallelPlugin(
tp_size=args.tp,
pp_size=args.pp,
zero_stage=args.zero,
cpu_offload=True,
enable_fused_normalization=True,
num_microbatches=args.mbs,
initial_scale=2**8,
precision="bf16",
)
else:
raise ValueError(f'Unknown plugin {args.plugin}')
raise ValueError(f"Unknown plugin {args.plugin}")
booster = Booster(plugin=plugin)
@@ -144,17 +156,19 @@ def main():
dp_size = plugin.dp_size if isinstance(plugin, HybridParallelPlugin) else coordinator.world_size
config = MODEL_CONFIGS[args.config]
dataset = RandomDataset(num_samples=args.batch_size * args.num_steps * dp_size,
max_length=args.max_length,
vocab_size=config.vocab_size)
dataset = RandomDataset(
num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size
)
dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
# ==============================
# Initialize Model and Optimizer
# ==============================
init_ctx = LazyInitContext(
default_device=get_current_device()) if isinstance(plugin,
(GeminiPlugin, HybridParallelPlugin)) else nullcontext()
init_ctx = (
LazyInitContext(default_device=get_current_device())
if isinstance(plugin, (GeminiPlugin, HybridParallelPlugin))
else nullcontext()
)
with init_ctx:
model = LlamaForCausalLM(config)
@@ -163,38 +177,36 @@ def main():
model.gradient_checkpointing_enable()
if args.xformers:
assert SUPPORT_FLASH, 'Use flash attention while xfomers is not installed'
assert SUPPORT_FLASH, "Use flash attention while xfomers is not installed"
replace_xformers(model)
model_numel = get_model_numel(model)
coordinator.print_on_master(f'Model params: {format_numel_str(model_numel)}')
performance_evaluator = PerformanceEvaluator(model_numel,
args.grad_checkpoint,
args.ignore_steps,
dp_world_size=dp_size)
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
performance_evaluator = PerformanceEvaluator(
model_numel, args.grad_checkpoint, args.ignore_steps, dp_world_size=dp_size
)
optimizer = HybridAdam(model.parameters())
torch.set_default_dtype(torch.bfloat16)
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader)
torch.set_default_dtype(torch.float)
coordinator.print_on_master(f'Booster init max CUDA memory: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB')
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
coordinator.print_on_master(
f'Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB')
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB"
)
if isinstance(plugin, HybridParallelPlugin) and args.pp > 1:
data_iter = iter(dataloader)
for step in tqdm(range(len(dataloader)), desc='Step', disable=not coordinator.is_master()):
for step in tqdm(range(len(dataloader)), desc="Step", disable=not coordinator.is_master()):
performance_evaluator.on_step_start(step)
booster.execute_pipeline(data_iter,
model,
criterion=lambda outputs, inputs: outputs[0],
optimizer=optimizer,
return_loss=False)
booster.execute_pipeline(
data_iter, model, criterion=lambda outputs, inputs: outputs[0], optimizer=optimizer, return_loss=False
)
optimizer.step()
optimizer.zero_grad()
performance_evaluator.on_step_end(input_ids=torch.empty(args.batch_size, args.max_length))
else:
for step, batch in enumerate(tqdm(dataloader, desc='Step', disable=not coordinator.is_master())):
for step, batch in enumerate(tqdm(dataloader, desc="Step", disable=not coordinator.is_master())):
performance_evaluator.on_step_start(step)
outputs = model(**batch)
loss = outputs[0]
@@ -204,8 +216,8 @@ def main():
performance_evaluator.on_step_end(**batch)
performance_evaluator.on_fit_end()
coordinator.print_on_master(f'Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB')
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
if __name__ == '__main__':
if __name__ == "__main__":
main()