[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -2,36 +2,35 @@ from colossalai import get_default_parser
def parse_demo_args():
parser = get_default_parser()
parser.add_argument("--model_name_or_path",
type=str,
default="facebook/opt-350m",
help="Path to pretrained model or model identifier from huggingface.co/models.")
parser.add_argument("--output_path",
type=str,
default="./output_model.bin",
help="The path of your saved model after finetuning.")
parser.add_argument(
"--model_name_or_path",
type=str,
default="facebook/opt-350m",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--output_path", type=str, default="./output_model.bin", help="The path of your saved model after finetuning."
)
parser.add_argument(
"--plugin",
type=str,
default="gemini",
help=
"Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'."
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'.",
)
parser.add_argument("--num_epoch", type=int, default=10, help="Number of epochs.")
parser.add_argument("--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader.")
parser.add_argument("--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.")
parser.add_argument("--warmup_ratio",
type=float,
default=0.1,
help="Ratio of warmup steps against total training steps.")
parser.add_argument(
"--batch_size", type=int, default=32, help="Batch size (per dp group) for the training dataloader."
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--warmup_ratio", type=float, default=0.1, help="Ratio of warmup steps against total training steps."
)
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay to use.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
@@ -40,25 +39,28 @@ def parse_demo_args():
def parse_benchmark_args():
parser = get_default_parser()
parser.add_argument("--model_name_or_path",
type=str,
default="facebook/opt-125m",
help="Path to pretrained model or model identifier from huggingface.co/models.")
parser.add_argument(
"--model_name_or_path",
type=str,
default="facebook/opt-125m",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--plugin",
type=str,
default="gemini",
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'.")
parser.add_argument("--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader.")
parser.add_argument("--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.")
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'.",
)
parser.add_argument(
"--batch_size", type=int, default=32, help="Batch size (per dp group) for the training dataloader."
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--max_train_steps", type=int, default=20, help="Total number of training steps to perform.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")

View File

@@ -1,37 +1,38 @@
import torch
from torch.utils.data import Dataset
from datasets import load_dataset
from torch.utils.data import Dataset
class NetflixDataset(Dataset):
def __init__(self, tokenizer):
super().__init__()
self.tokenizer = tokenizer
self.input_ids = []
self.attn_masks = []
self.labels = []
self.txt_list = netflix_descriptions = load_dataset("hugginglearners/netflix-shows", split="train")['description']
self.txt_list = netflix_descriptions = load_dataset("hugginglearners/netflix-shows", split="train")[
"description"
]
self.max_length = max([len(self.tokenizer.encode(description)) for description in netflix_descriptions])
for txt in self.txt_list:
encodings_dict = self.tokenizer('</s>' + txt + '</s>',
truncation=True,
max_length=self.max_length,
padding="max_length")
self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
encodings_dict = self.tokenizer(
"</s>" + txt + "</s>", truncation=True, max_length=self.max_length, padding="max_length"
)
self.input_ids.append(torch.tensor(encodings_dict["input_ids"]))
self.attn_masks.append(torch.tensor(encodings_dict["attention_mask"]))
def __len__(self):
return len(self.input_ids)
def __getitem__(self, idx):
return self.input_ids[idx], self.attn_masks[idx]
def netflix_collator(data):
return {'input_ids': torch.stack([x[0] for x in data]),
'attention_mask': torch.stack([x[1] for x in data]),
'labels': torch.stack([x[0] for x in data])}
return {
"input_ids": torch.stack([x[0] for x in data]),
"attention_mask": torch.stack([x[1] for x in data]),
"labels": torch.stack([x[0] for x in data]),
}

View File

@@ -35,6 +35,7 @@ def get_data(batch_size, seq_len, vocab_size):
def colo_memory_cap(size_in_GB):
from colossalai.utils import colo_device_memory_capacity, colo_set_process_memory_fraction, get_current_device
cuda_capacity = colo_device_memory_capacity(get_current_device())
if size_in_GB * (1024**3) < cuda_capacity:
colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity)
@@ -42,7 +43,6 @@ def colo_memory_cap(size_in_GB):
def main():
args = parse_benchmark_args()
# Launch ColossalAI
@@ -72,13 +72,13 @@ def main():
# Set plugin
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
elif args.plugin == "gemini":
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
elif args.plugin == 'low_level_zero':
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
@@ -101,11 +101,10 @@ def main():
start_time = time.time()
for _ in range(args.max_train_steps):
input_ids, attn_mask = get_data(args.batch_size, SEQ_LEN, VOCAB_SIZE)
optimizer.zero_grad()
outputs = model(input_ids=input_ids, attention_mask=attn_mask, labels=input_ids, use_cache=False)
loss = outputs['loss']
loss = outputs["loss"]
booster.backward(loss, optimizer)
optimizer.step()
@@ -123,7 +122,8 @@ def main():
f"plugin: {args.plugin}, "
f"throughput: {throughput}, "
f"maximum memory usage per gpu: {max_mem}.",
ranks=[0])
ranks=[0],
)
if __name__ == "__main__":

View File

@@ -1,5 +1,3 @@
import time
import datasets
import torch
import transformers
@@ -12,7 +10,6 @@ from transformers.utils.versions import require_version
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.booster.plugin.hybrid_parallel_plugin import HybridParallelModule
from colossalai.cluster import DistCoordinator
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
@@ -29,7 +26,6 @@ def move_to_cuda(batch, device):
def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator):
torch.cuda.synchronize()
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
@@ -39,22 +35,19 @@ def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, b
model.train()
optimizer.zero_grad()
dataloader = iter(dataloader)
with tqdm(range(total_step), desc=f'Epoch [{epoch + 1}]',
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
with tqdm(
range(total_step), desc=f"Epoch [{epoch + 1}]", disable=not (coordinator.is_master() or is_pp_last_stage)
) as pbar:
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(dataloader,
model,
_criterion,
optimizer,
return_loss=True,
return_outputs=True)
outputs = booster.execute_pipeline(
dataloader, model, _criterion, optimizer, return_loss=True, return_outputs=True
)
# Backward and optimize
if is_pp_last_stage:
loss = outputs['loss']
pbar.set_postfix({'loss': loss.item()})
loss = outputs["loss"]
pbar.set_postfix({"loss": loss.item()})
else:
data = next(dataloader)
data = move_to_cuda(data)
@@ -62,7 +55,7 @@ def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, b
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({'loss': loss.item()})
pbar.set_postfix({"loss": loss.item()})
optimizer.step()
optimizer.zero_grad()
@@ -70,7 +63,6 @@ def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, b
def main():
args = parse_demo_args()
# Launch ColossalAI
@@ -98,34 +90,34 @@ def main():
# Set plugin
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
elif args.plugin == "gemini":
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
elif args.plugin == 'low_level_zero':
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
elif args.plugin == 'hybrid_parallel':
elif args.plugin == "hybrid_parallel":
# modify the param accordingly for finetuning test cases
plugin = HybridParallelPlugin(tp_size=2,
pp_size=2,
num_microbatches=2,
enable_all_optimization=True,
zero_stage=0,
precision='fp16',
initial_scale=1)
plugin = HybridParallelPlugin(
tp_size=2,
pp_size=2,
num_microbatches=2,
enable_all_optimization=True,
zero_stage=0,
precision="fp16",
initial_scale=1,
)
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
# Prepare tokenizer and dataloader
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
dataset = NetflixDataset(tokenizer)
dataloader = plugin.prepare_dataloader(dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
collate_fn=netflix_collator)
dataloader = plugin.prepare_dataloader(
dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, collate_fn=netflix_collator
)
# Set optimizer
optimizer = HybridAdam(model.parameters(), lr=(args.learning_rate * world_size), weight_decay=args.weight_decay)
@@ -133,9 +125,9 @@ def main():
# Set lr scheduler
total_steps = len(dataloader) * args.num_epoch
num_warmup_steps = int(args.warmup_ratio * total_steps)
lr_scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=len(dataloader) * args.num_epoch)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=len(dataloader) * args.num_epoch
)
# Define criterion
def _criterion(outputs, inputs):
@@ -145,11 +137,9 @@ def main():
# Set booster
booster = Booster(plugin=plugin, **booster_kwargs)
model, optimizer, _criterion, dataloader, lr_scheduler = booster.boost(model=model,
optimizer=optimizer,
dataloader=dataloader,
criterion=_criterion,
lr_scheduler=lr_scheduler)
model, optimizer, _criterion, dataloader, lr_scheduler = booster.boost(
model=model, optimizer=optimizer, dataloader=dataloader, criterion=_criterion, lr_scheduler=lr_scheduler
)
# Start finetuning
logger.info(f"Start finetuning", ranks=[0])

View File

@@ -24,7 +24,7 @@ torchrun \
--mem_cap ${MEMCAP} \
--plugin ${PLUGIN} \
--batch_size ${BS}
done
done
done