[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -18,11 +18,11 @@ NUM_HEADS = 4
MLP_RATIO = 2
NUM_CLASSES = 10
CHECKPOINT = False
SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE)**2 + 1 # add 1 for cls token
SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE) ** 2 + 1 # add 1 for cls token
# parallel setting
TENSOR_PARALLEL_SIZE = 2
TENSOR_PARALLEL_MODE = '1d'
TENSOR_PARALLEL_MODE = "1d"
parallel = dict(
pipeline=2,
@@ -33,4 +33,4 @@ fp16 = dict(mode=AMP_TYPE.NAIVE)
clip_grad_norm = 1.0
# pipeline config
NUM_MICRO_BATCHES = parallel['pipeline']
NUM_MICRO_BATCHES = parallel["pipeline"]

View File

@@ -14,8 +14,7 @@ from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.utils import is_using_pp
class DummyDataloader():
class DummyDataloader:
def __init__(self, length, batch_size):
self.length = length
self.batch_size = batch_size
@@ -50,7 +49,7 @@ def main():
logger = get_dist_logger()
logger.info("initialized distributed environment", ranks=[0])
if hasattr(gpc.config, 'LOG_PATH'):
if hasattr(gpc.config, "LOG_PATH"):
if gpc.get_global_rank() == 0:
log_path = gpc.config.LOG_PATH
if not os.path.exists(log_path):
@@ -60,15 +59,17 @@ def main():
use_pipeline = is_using_pp()
# create model
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
patch_size=gpc.config.PATCH_SIZE,
hidden_size=gpc.config.HIDDEN_SIZE,
depth=gpc.config.DEPTH,
num_heads=gpc.config.NUM_HEADS,
mlp_ratio=gpc.config.MLP_RATIO,
num_classes=10,
init_method='jax',
checkpoint=gpc.config.CHECKPOINT)
model_kwargs = dict(
img_size=gpc.config.IMG_SIZE,
patch_size=gpc.config.PATCH_SIZE,
hidden_size=gpc.config.HIDDEN_SIZE,
depth=gpc.config.DEPTH,
num_heads=gpc.config.NUM_HEADS,
mlp_ratio=gpc.config.MLP_RATIO,
num_classes=10,
init_method="jax",
checkpoint=gpc.config.CHECKPOINT,
)
if use_pipeline:
pipelinable = PipelinableContext()
@@ -102,16 +103,18 @@ def main():
optimizer = torch.optim.AdamW(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
# create lr scheduler
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
total_steps=gpc.config.NUM_EPOCHS,
warmup_steps=gpc.config.WARMUP_EPOCHS)
lr_scheduler = CosineAnnealingWarmupLR(
optimizer=optimizer, total_steps=gpc.config.NUM_EPOCHS, warmup_steps=gpc.config.WARMUP_EPOCHS
)
# initialize
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader)
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
)
logger.info("Engine is built", ranks=[0])
@@ -121,7 +124,7 @@ def main():
data_iter = iter(train_dataloader)
if gpc.get_global_rank() == 0:
description = 'Epoch {} / {}'.format(epoch, gpc.config.NUM_EPOCHS)
description = "Epoch {} / {}".format(epoch, gpc.config.NUM_EPOCHS)
progress = tqdm(range(len(train_dataloader)), desc=description)
else:
progress = range(len(train_dataloader))
@@ -133,5 +136,5 @@ def main():
gpc.destroy()
if __name__ == '__main__':
if __name__ == "__main__":
main()