[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -10,8 +10,7 @@ from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import Lamb, Lars
class DummyDataloader():
class DummyDataloader:
def __init__(self, length, batch_size):
self.length = length
self.batch_size = batch_size
@@ -39,10 +38,9 @@ class DummyDataloader():
def main():
# initialize distributed setting
parser = colossalai.get_default_parser()
parser.add_argument('--optimizer',
choices=['lars', 'lamb'],
help="Choose your large-batch optimizer",
required=True)
parser.add_argument(
"--optimizer", choices=["lars", "lamb"], help="Choose your large-batch optimizer", required=True
)
args = parser.parse_args()
# launch from torch
@@ -70,16 +68,18 @@ def main():
optimizer = optim_cls(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
# create lr scheduler
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
total_steps=gpc.config.NUM_EPOCHS,
warmup_steps=gpc.config.WARMUP_EPOCHS)
lr_scheduler = CosineAnnealingWarmupLR(
optimizer=optimizer, total_steps=gpc.config.NUM_EPOCHS, warmup_steps=gpc.config.WARMUP_EPOCHS
)
# initialize
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader)
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
)
logger.info("Engine is built", ranks=[0])
@@ -89,7 +89,7 @@ def main():
data_iter = iter(train_dataloader)
if gpc.get_global_rank() == 0:
description = 'Epoch {} / {}'.format(epoch, gpc.config.NUM_EPOCHS)
description = "Epoch {} / {}".format(epoch, gpc.config.NUM_EPOCHS)
progress = tqdm(range(len(train_dataloader)), desc=description)
else:
progress = range(len(train_dataloader))
@@ -100,5 +100,5 @@ def main():
lr_scheduler.step()
if __name__ == '__main__':
if __name__ == "__main__":
main()