[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,5 +1,6 @@
from typing import Any, Deque, Hashable, List, Tuple
import torch
from typing import List, Deque, Tuple, Hashable, Any
from energonai import BatchManager, SubmitEntry, TaskEntry
@@ -10,15 +11,15 @@ class BatchManagerForGeneration(BatchManager):
self.pad_token_id = pad_token_id
def _left_padding(self, batch_inputs):
max_len = max(len(inputs['input_ids']) for inputs in batch_inputs)
outputs = {'input_ids': [], 'attention_mask': []}
max_len = max(len(inputs["input_ids"]) for inputs in batch_inputs)
outputs = {"input_ids": [], "attention_mask": []}
for inputs in batch_inputs:
input_ids, attention_mask = inputs['input_ids'], inputs['attention_mask']
input_ids, attention_mask = inputs["input_ids"], inputs["attention_mask"]
padding_len = max_len - len(input_ids)
input_ids = [self.pad_token_id] * padding_len + input_ids
attention_mask = [0] * padding_len + attention_mask
outputs['input_ids'].append(input_ids)
outputs['attention_mask'].append(attention_mask)
outputs["input_ids"].append(input_ids)
outputs["attention_mask"].append(attention_mask)
for k in outputs:
outputs[k] = torch.tensor(outputs[k])
return outputs, max_len
@@ -26,7 +27,7 @@ class BatchManagerForGeneration(BatchManager):
@staticmethod
def _make_batch_key(entry: SubmitEntry) -> tuple:
data = entry.data
return (data['top_k'], data['top_p'], data['temperature'])
return (data["top_k"], data["top_p"], data["temperature"])
def make_batch(self, q: Deque[SubmitEntry]) -> Tuple[TaskEntry, dict]:
entry = q.popleft()
@@ -37,7 +38,7 @@ class BatchManagerForGeneration(BatchManager):
break
if self._make_batch_key(entry) != self._make_batch_key(q[0]):
break
if q[0].data['max_tokens'] > entry.data['max_tokens']:
if q[0].data["max_tokens"] > entry.data["max_tokens"]:
break
e = q.popleft()
batch.append(e.data)
@@ -45,12 +46,12 @@ class BatchManagerForGeneration(BatchManager):
inputs, max_len = self._left_padding(batch)
trunc_lens = []
for data in batch:
trunc_lens.append(max_len + data['max_tokens'])
inputs['top_k'] = entry.data['top_k']
inputs['top_p'] = entry.data['top_p']
inputs['temperature'] = entry.data['temperature']
inputs['max_tokens'] = max_len + entry.data['max_tokens']
return TaskEntry(tuple(uids), inputs), {'trunc_lens': trunc_lens}
trunc_lens.append(max_len + data["max_tokens"])
inputs["top_k"] = entry.data["top_k"]
inputs["top_p"] = entry.data["top_p"]
inputs["temperature"] = entry.data["temperature"]
inputs["max_tokens"] = max_len + entry.data["max_tokens"]
return TaskEntry(tuple(uids), inputs), {"trunc_lens": trunc_lens}
def split_batch(self, task_entry: TaskEntry, trunc_lens: List[int] = []) -> List[Tuple[Hashable, Any]]:
retval = []