[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,29 +1,34 @@
from .blendable_dataset import BlendableDataset
from .dataset_utils import get_datasets_weights_and_num_samples, get_indexed_dataset_, get_train_valid_test_split_
from .bert_dataset import BertDataset
from colossalai.logging import get_dist_logger
DSET_TYPE_BERT = 'standard_bert'
DSET_TYPE_ICT = 'ict'
DSET_TYPE_T5 = 't5'
from .bert_dataset import BertDataset
from .blendable_dataset import BlendableDataset
from .dataset_utils import get_datasets_weights_and_num_samples, get_indexed_dataset_, get_train_valid_test_split_
DSET_TYPE_BERT = "standard_bert"
DSET_TYPE_ICT = "ict"
DSET_TYPE_T5 = "t5"
DSET_TYPES = [DSET_TYPE_BERT, DSET_TYPE_ICT, DSET_TYPE_T5]
def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
train_valid_test_num_samples,
max_seq_length, masked_lm_prob,
short_seq_prob, seed, skip_warmup,
binary_head,
dataset_type='standard_bert'):
def _build_train_valid_test_datasets(
data_prefix,
data_impl,
splits_string,
train_valid_test_num_samples,
max_seq_length,
masked_lm_prob,
short_seq_prob,
seed,
skip_warmup,
binary_head,
dataset_type="standard_bert",
):
if dataset_type not in DSET_TYPES:
raise ValueError("Invalid dataset_type: ", dataset_type)
# Indexed dataset.
indexed_dataset = get_indexed_dataset_(data_prefix,
data_impl,
skip_warmup)
indexed_dataset = get_indexed_dataset_(data_prefix, data_impl, skip_warmup)
# Get start and end indices of train/valid/train into doc-idx
# Note that doc-idx is designed to be num-docs + 1 so we can
@@ -34,22 +39,25 @@ def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
logger = get_dist_logger()
# Print stats about the splits.
logger.info('\n > dataset split:', ranks=[0])
logger.info("\n > dataset split:", ranks=[0])
def print_split_stats(name, index):
start_index = indexed_dataset.doc_idx[splits[index]]
end_index = indexed_dataset.doc_idx[splits[index + 1]]
logger.info('\n {}:'.format(name) +
'\n document indices in [{}, {}) total of {} documents'.format(
splits[index], splits[index + 1],
splits[index + 1] - splits[index]) +
'\n sentence indices in [{}, {}) total of {} sentences'.format(
start_index, end_index,
end_index - start_index),
ranks=[0])
print_split_stats('train', 0)
print_split_stats('validation', 1)
print_split_stats('test', 2)
logger.info(
"\n {}:".format(name)
+ "\n document indices in [{}, {}) total of {} documents".format(
splits[index], splits[index + 1], splits[index + 1] - splits[index]
)
+ "\n sentence indices in [{}, {}) total of {} sentences".format(
start_index, end_index, end_index - start_index
),
ranks=[0],
)
print_split_stats("train", 0)
print_split_stats("validation", 1)
print_split_stats("test", 2)
def build_dataset(index, name):
dataset = None
@@ -80,44 +88,53 @@ def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
masked_lm_prob=masked_lm_prob,
short_seq_prob=short_seq_prob,
binary_head=binary_head,
**kwargs
**kwargs,
)
# Set the original pointer so dataset remains the main dataset.
indexed_dataset.set_doc_idx(doc_idx_ptr)
# Checks.
assert indexed_dataset.doc_idx[0] == 0
assert indexed_dataset.doc_idx.shape[0] == \
(total_num_of_documents + 1)
assert indexed_dataset.doc_idx.shape[0] == (total_num_of_documents + 1)
return dataset
train_dataset = build_dataset(0, 'train')
valid_dataset = build_dataset(1, 'valid')
test_dataset = build_dataset(2, 'test')
train_dataset = build_dataset(0, "train")
valid_dataset = build_dataset(1, "valid")
test_dataset = build_dataset(2, "test")
return (train_dataset, valid_dataset, test_dataset)
def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
train_valid_test_num_samples,
max_seq_length, masked_lm_prob,
short_seq_prob, seed, skip_warmup,
binary_head,
dataset_type='standard_bert'):
def build_train_valid_test_datasets(
data_prefix,
data_impl,
splits_string,
train_valid_test_num_samples,
max_seq_length,
masked_lm_prob,
short_seq_prob,
seed,
skip_warmup,
binary_head,
dataset_type="standard_bert",
):
if len(data_prefix) == 1:
return _build_train_valid_test_datasets(data_prefix[0],
data_impl, splits_string,
train_valid_test_num_samples,
max_seq_length, masked_lm_prob,
short_seq_prob, seed,
skip_warmup,
binary_head,
dataset_type=dataset_type)
return _build_train_valid_test_datasets(
data_prefix[0],
data_impl,
splits_string,
train_valid_test_num_samples,
max_seq_length,
masked_lm_prob,
short_seq_prob,
seed,
skip_warmup,
binary_head,
dataset_type=dataset_type,
)
# Blending dataset.
# Parse the values.
output = get_datasets_weights_and_num_samples(data_prefix,
train_valid_test_num_samples)
output = get_datasets_weights_and_num_samples(data_prefix, train_valid_test_num_samples)
prefixes, weights, datasets_train_valid_test_num_samples = output
# Build individual datasets.
@@ -126,10 +143,18 @@ def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
test_datasets = []
for i in range(len(prefixes)):
train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
prefixes[i], data_impl, splits_string,
prefixes[i],
data_impl,
splits_string,
datasets_train_valid_test_num_samples[i],
max_seq_length, masked_lm_prob, short_seq_prob,
seed, skip_warmup, binary_head, dataset_type=dataset_type)
max_seq_length,
masked_lm_prob,
short_seq_prob,
seed,
skip_warmup,
binary_head,
dataset_type=dataset_type,
)
if train_ds:
train_datasets.append(train_ds)
if valid_ds:
@@ -148,5 +173,4 @@ def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
if test_datasets:
blending_test_dataset = BlendableDataset(test_datasets, weights)
return (blending_train_dataset, blending_valid_dataset,
blending_test_dataset)
return (blending_train_dataset, blending_valid_dataset, blending_test_dataset)