[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -14,7 +14,6 @@
# limitations under the License.
"""Dataloaders."""
import random
import torch
@@ -22,61 +21,60 @@ from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
def build_pretraining_data_loader(dataset, consumed_samples, micro_batch_size, dataloader_type='single', num_workers=0):
def build_pretraining_data_loader(dataset, consumed_samples, micro_batch_size, dataloader_type="single", num_workers=0):
"""Build dataloader given an input dataset."""
if dataset is None:
return None
# Megatron sampler
if dataloader_type == 'single':
batch_sampler = MegatronPretrainingSampler(total_samples=len(dataset),
consumed_samples=consumed_samples,
micro_batch_size=micro_batch_size,
data_parallel_rank=gpc.get_local_rank(ParallelMode.DATA),
data_parallel_size=gpc.get_world_size(ParallelMode.DATA))
elif dataloader_type == 'cyclic':
batch_sampler = MegatronPretrainingRandomSampler(total_samples=len(dataset),
consumed_samples=consumed_samples,
micro_batch_size=micro_batch_size,
data_parallel_rank=gpc.get_local_rank(ParallelMode.DATA),
data_parallel_size=gpc.get_world_size(ParallelMode.DATA))
if dataloader_type == "single":
batch_sampler = MegatronPretrainingSampler(
total_samples=len(dataset),
consumed_samples=consumed_samples,
micro_batch_size=micro_batch_size,
data_parallel_rank=gpc.get_local_rank(ParallelMode.DATA),
data_parallel_size=gpc.get_world_size(ParallelMode.DATA),
)
elif dataloader_type == "cyclic":
batch_sampler = MegatronPretrainingRandomSampler(
total_samples=len(dataset),
consumed_samples=consumed_samples,
micro_batch_size=micro_batch_size,
data_parallel_rank=gpc.get_local_rank(ParallelMode.DATA),
data_parallel_size=gpc.get_world_size(ParallelMode.DATA),
)
else:
raise Exception('{} dataloader type is not supported.'.format(dataloader_type))
raise Exception("{} dataloader type is not supported.".format(dataloader_type))
# Torch dataloader.
return torch.utils.data.DataLoader(dataset, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=True)
class MegatronPretrainingSampler:
def __init__(self,
total_samples,
consumed_samples,
micro_batch_size,
data_parallel_rank,
data_parallel_size,
drop_last=True):
def __init__(
self, total_samples, consumed_samples, micro_batch_size, data_parallel_rank, data_parallel_size, drop_last=True
):
# Keep a copy of input params for later use.
self.total_samples = total_samples
self.consumed_samples = consumed_samples
self.micro_batch_size = micro_batch_size
self.data_parallel_rank = data_parallel_rank
self.micro_batch_times_data_parallel_size = \
self.micro_batch_size * data_parallel_size
self.micro_batch_times_data_parallel_size = self.micro_batch_size * data_parallel_size
self.drop_last = drop_last
# Sanity checks.
assert self.total_samples > 0, \
'no sample to consume: {}'.format(self.total_samples)
assert self.consumed_samples < self.total_samples, \
'no samples left to consume: {}, {}'.format(self.consumed_samples,
self.total_samples)
assert self.total_samples > 0, "no sample to consume: {}".format(self.total_samples)
assert self.consumed_samples < self.total_samples, "no samples left to consume: {}, {}".format(
self.consumed_samples, self.total_samples
)
assert self.micro_batch_size > 0
assert data_parallel_size > 0
assert self.data_parallel_rank < data_parallel_size, \
'data_parallel_rank should be smaller than data size: {}, ' \
'{}'.format(self.data_parallel_rank, data_parallel_size)
assert (
self.data_parallel_rank < data_parallel_size
), "data_parallel_rank should be smaller than data size: {}, " "{}".format(
self.data_parallel_rank, data_parallel_size
)
def __len__(self):
return self.total_samples
@@ -103,7 +101,6 @@ class MegatronPretrainingSampler:
class MegatronPretrainingRandomSampler:
def __init__(self, total_samples, consumed_samples, micro_batch_size, data_parallel_rank, data_parallel_size):
# Keep a copy of input params for later use.
self.total_samples = total_samples
@@ -111,19 +108,18 @@ class MegatronPretrainingRandomSampler:
self.micro_batch_size = micro_batch_size
self.data_parallel_rank = data_parallel_rank
self.data_parallel_size = data_parallel_size
self.micro_batch_times_data_parallel_size = \
self.micro_batch_size * data_parallel_size
self.last_batch_size = \
self.total_samples % self.micro_batch_times_data_parallel_size
self.micro_batch_times_data_parallel_size = self.micro_batch_size * data_parallel_size
self.last_batch_size = self.total_samples % self.micro_batch_times_data_parallel_size
# Sanity checks.
assert self.total_samples > 0, \
'no sample to consume: {}'.format(self.total_samples)
assert self.total_samples > 0, "no sample to consume: {}".format(self.total_samples)
assert self.micro_batch_size > 0
assert data_parallel_size > 0
assert self.data_parallel_rank < data_parallel_size, \
'data_parallel_rank should be smaller than data size: {}, ' \
'{}'.format(self.data_parallel_rank, data_parallel_size)
assert (
self.data_parallel_rank < data_parallel_size
), "data_parallel_rank should be smaller than data size: {}, " "{}".format(
self.data_parallel_rank, data_parallel_size
)
def __len__(self):
return self.total_samples
@@ -135,8 +131,7 @@ class MegatronPretrainingRandomSampler:
assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0
# data sharding and random sampling
bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) \
* self.micro_batch_size
bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) * self.micro_batch_size
bucket_offset = current_epoch_samples // self.data_parallel_size
start_idx = self.data_parallel_rank * bucket_size