mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-27 03:26:41 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -5,7 +5,6 @@ import torch.nn.init as init
|
||||
|
||||
|
||||
class VocabEmbedding(torch.nn.Module):
|
||||
|
||||
def __init__(self, num_embeddings, embedding_dim):
|
||||
super(VocabEmbedding, self).__init__()
|
||||
# Keep the input dimensions.
|
||||
@@ -13,26 +12,29 @@ class VocabEmbedding(torch.nn.Module):
|
||||
self.embedding_dim = embedding_dim
|
||||
self.padding_idx = None
|
||||
self.max_norm = None
|
||||
self.norm_type = 2.
|
||||
self.norm_type = 2.0
|
||||
self.scale_grad_by_freq = False
|
||||
self.sparse = False
|
||||
self._weight = None
|
||||
|
||||
# Allocate weights and initialize.
|
||||
self.weight = nn.Parameter(torch.empty(
|
||||
self.num_embeddings, self.embedding_dim))
|
||||
self.weight = nn.Parameter(torch.empty(self.num_embeddings, self.embedding_dim))
|
||||
init.xavier_uniform_(self.weight)
|
||||
|
||||
def forward(self, hidden_state):
|
||||
output = F.embedding(hidden_state, self.weight,
|
||||
self.padding_idx, self.max_norm,
|
||||
self.norm_type, self.scale_grad_by_freq,
|
||||
self.sparse)
|
||||
output = F.embedding(
|
||||
hidden_state,
|
||||
self.weight,
|
||||
self.padding_idx,
|
||||
self.max_norm,
|
||||
self.norm_type,
|
||||
self.scale_grad_by_freq,
|
||||
self.sparse,
|
||||
)
|
||||
return output
|
||||
|
||||
def __repr__(self):
|
||||
return f'VocabEmbedding(num_embeddings={self.num_embeddings}, ' \
|
||||
f'embedding_dim={self.embedding_dim})'
|
||||
return f"VocabEmbedding(num_embeddings={self.num_embeddings}, " f"embedding_dim={self.embedding_dim})"
|
||||
|
||||
|
||||
class Embedding(nn.Module):
|
||||
@@ -48,12 +50,7 @@ class Embedding(nn.Module):
|
||||
will ignore this embedding
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
hidden_size,
|
||||
vocab_size,
|
||||
max_sequence_length,
|
||||
embedding_dropout_prob,
|
||||
num_tokentypes):
|
||||
def __init__(self, hidden_size, vocab_size, max_sequence_length, embedding_dropout_prob, num_tokentypes):
|
||||
super(Embedding, self).__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
@@ -62,16 +59,14 @@ class Embedding(nn.Module):
|
||||
self.word_embeddings = VocabEmbedding(vocab_size, self.hidden_size)
|
||||
|
||||
# Position embedding (serial).
|
||||
self.position_embeddings = torch.nn.Embedding(
|
||||
max_sequence_length, self.hidden_size)
|
||||
self.position_embeddings = torch.nn.Embedding(max_sequence_length, self.hidden_size)
|
||||
|
||||
# Token type embedding.
|
||||
# Add this as an optional field that can be added through
|
||||
# method call so we can load a pretrain model without
|
||||
# token types and add them as needed.
|
||||
if self.num_tokentypes > 0:
|
||||
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
|
||||
self.hidden_size)
|
||||
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes, self.hidden_size)
|
||||
else:
|
||||
self.tokentype_embeddings = None
|
||||
|
||||
|
||||
Reference in New Issue
Block a user