[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -28,7 +28,7 @@ def data_gen_for_lm():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
data['labels'] = data['input_ids'].clone()
data["labels"] = data["input_ids"].clone()
return data
@@ -36,7 +36,7 @@ def data_gen_for_pretraining():
# pretraining data gen
# `next_sentence_label` is the label for next sentence prediction, 0 or 1
data = data_gen_for_lm()
data['next_sentence_label'] = torch.tensor([1], dtype=torch.int64)
data["next_sentence_label"] = torch.tensor([1], dtype=torch.int64)
return data
@@ -44,7 +44,7 @@ def data_gen_for_sequence_classification():
# sequence classification data gen
# `labels` is the label for sequence classification, 0 or 1
data = data_gen()
data['labels'] = torch.tensor([1], dtype=torch.int64)
data["labels"] = torch.tensor([1], dtype=torch.int64)
return data
@@ -52,7 +52,7 @@ def data_gen_for_token_classification():
# token classification data gen
# `labels` is the type not the token id for token classification, 0 or 1
data = data_gen()
data['labels'] = torch.tensor([[1, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64)
data["labels"] = torch.tensor([[1, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64)
return data
@@ -67,32 +67,276 @@ def data_gen_for_mcq():
# data = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
# data = {k: v.unsqueeze(0) for k, v in encoding.items()}
# data['labels'] = torch.tensor([0], dtype=torch.int64)
input_ids = torch.tensor([[[
101, 1999, 3304, 1010, 10733, 2366, 1999, 5337, 10906, 1010, 2107, 2004, 2012, 1037, 4825, 1010, 2003, 3591,
4895, 14540, 6610, 2094, 1012, 102, 2009, 2003, 8828, 2007, 1037, 9292, 1998, 1037, 5442, 1012, 102, 102, 5442,
1012, 102, 102
],
[
101, 1999, 3304, 1010, 10733, 2366, 1999, 5337, 10906, 1010, 2107, 2004, 2012, 1037,
4825, 1010, 2003, 3591, 4895, 14540, 6610, 2094, 1012, 102, 2009, 2003, 8828, 2096,
2218, 1999, 1996, 2192, 1012, 102, 0, 0, 1012, 102, 0, 0
]]])
token_type_ids = torch.tensor([[[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1
],
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0
]]])
attention_mask = torch.tensor([[[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1
],
[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0
]]])
input_ids = torch.tensor(
[
[
[
101,
1999,
3304,
1010,
10733,
2366,
1999,
5337,
10906,
1010,
2107,
2004,
2012,
1037,
4825,
1010,
2003,
3591,
4895,
14540,
6610,
2094,
1012,
102,
2009,
2003,
8828,
2007,
1037,
9292,
1998,
1037,
5442,
1012,
102,
102,
5442,
1012,
102,
102,
],
[
101,
1999,
3304,
1010,
10733,
2366,
1999,
5337,
10906,
1010,
2107,
2004,
2012,
1037,
4825,
1010,
2003,
3591,
4895,
14540,
6610,
2094,
1012,
102,
2009,
2003,
8828,
2096,
2218,
1999,
1996,
2192,
1012,
102,
0,
0,
1012,
102,
0,
0,
],
]
]
)
token_type_ids = torch.tensor(
[
[
[
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
],
[
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
1,
1,
0,
0,
],
]
]
)
attention_mask = torch.tensor(
[
[
[
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
],
[
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
1,
1,
0,
0,
],
]
]
)
labels = torch.tensor([0], dtype=torch.int64)
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, labels=labels)
@@ -103,9 +347,9 @@ def data_gen_for_qa():
# no need for labels and use start and end position instead
data = data_gen()
start_positions = torch.tensor([0], dtype=torch.int64)
data['start_positions'] = start_positions
data["start_positions"] = start_positions
end_positions = torch.tensor([1], dtype=torch.int64)
data['end_positions'] = end_positions
data["end_positions"] = end_positions
return data
@@ -114,69 +358,90 @@ output_transform_fn = lambda x: x
# define loss funciton
loss_fn_for_bert_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state, torch.ones_like(x.last_hidden_state
))
loss_fn_for_bert_model = lambda x: torch.nn.functional.mse_loss(
x.last_hidden_state, torch.ones_like(x.last_hidden_state)
)
loss_fn = lambda x: x.loss
config = transformers.BertConfig(hidden_size=128,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=256,
hidden_dropout_prob=0,
attention_probs_dropout_prob=0)
config = transformers.BertConfig(
hidden_size=128,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=256,
hidden_dropout_prob=0,
attention_probs_dropout_prob=0,
)
# register the BERT variants
model_zoo.register(name='transformers_bert',
model_fn=lambda: transformers.BertModel(config, add_pooling_layer=False),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_bert_model,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_bert_for_pretraining',
model_fn=lambda: transformers.BertForPreTraining(config),
data_gen_fn=data_gen_for_pretraining,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_bert_lm_head_model',
model_fn=lambda: transformers.BertLMHeadModel(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_bert_for_masked_lm',
model_fn=lambda: transformers.BertForMaskedLM(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_bert_for_sequence_classification',
model_fn=lambda: transformers.BertForSequenceClassification(config),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_bert_for_token_classification',
model_fn=lambda: transformers.BertForTokenClassification(config),
data_gen_fn=data_gen_for_token_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_bert_for_next_sentence',
model_fn=lambda: transformers.BertForNextSentencePrediction(config),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_bert_for_mcq',
model_fn=lambda: transformers.BertForMultipleChoice(config),
data_gen_fn=data_gen_for_mcq,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_bert_for_question_answering',
model_fn=lambda: transformers.BertForQuestionAnswering(config),
data_gen_fn=data_gen_for_qa,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(
name="transformers_bert",
model_fn=lambda: transformers.BertModel(config, add_pooling_layer=False),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_bert_model,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bert_for_pretraining",
model_fn=lambda: transformers.BertForPreTraining(config),
data_gen_fn=data_gen_for_pretraining,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bert_lm_head_model",
model_fn=lambda: transformers.BertLMHeadModel(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bert_for_masked_lm",
model_fn=lambda: transformers.BertForMaskedLM(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bert_for_sequence_classification",
model_fn=lambda: transformers.BertForSequenceClassification(config),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bert_for_token_classification",
model_fn=lambda: transformers.BertForTokenClassification(config),
data_gen_fn=data_gen_for_token_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bert_for_next_sentence",
model_fn=lambda: transformers.BertForNextSentencePrediction(config),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bert_for_mcq",
model_fn=lambda: transformers.BertForMultipleChoice(config),
data_gen_fn=data_gen_for_mcq,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bert_for_question_answering",
model_fn=lambda: transformers.BertForQuestionAnswering(config),
data_gen_fn=data_gen_for_qa,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)