mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 04:50:17 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -25,7 +25,7 @@ def data_gen_for_lm():
|
||||
# LM data gen
|
||||
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
|
||||
data = data_gen()
|
||||
data['labels'] = data['input_ids'].clone()
|
||||
data["labels"] = data["input_ids"].clone()
|
||||
return data
|
||||
|
||||
|
||||
@@ -33,14 +33,14 @@ def data_gen_for_token_classification():
|
||||
# token classification data gen
|
||||
# `labels` is the type not the token id for token classification, 0 or 1
|
||||
data = data_gen()
|
||||
data['labels'] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64)
|
||||
data["labels"] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64)
|
||||
return data
|
||||
|
||||
|
||||
def data_gen_for_sequence_classification():
|
||||
# sequence classification data gen
|
||||
data = data_gen()
|
||||
data['labels'] = torch.tensor([0], dtype=torch.int64)
|
||||
data["labels"] = torch.tensor([0], dtype=torch.int64)
|
||||
return data
|
||||
|
||||
|
||||
@@ -54,62 +54,69 @@ def data_gen_for_question_answering():
|
||||
|
||||
input_ids = torch.tensor(
|
||||
[[57647, 1620, 23967, 620, 107373, 34, 91514, 620, 107373, 1620, 267, 35378, 48946, 18161, 48946, 18161]],
|
||||
dtype=torch.int64)
|
||||
dtype=torch.int64,
|
||||
)
|
||||
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
|
||||
start_positions = torch.tensor([1], dtype=torch.int64)
|
||||
end_positions = torch.tensor([10], dtype=torch.int64)
|
||||
return dict(input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
start_positions=start_positions,
|
||||
end_positions=end_positions)
|
||||
return dict(
|
||||
input_ids=input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions
|
||||
)
|
||||
|
||||
|
||||
# define output transform function
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss function
|
||||
loss_fn_for_bloom_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state,
|
||||
torch.ones_like(x.last_hidden_state))
|
||||
loss_fn_for_bloom_model = lambda x: torch.nn.functional.mse_loss(
|
||||
x.last_hidden_state, torch.ones_like(x.last_hidden_state)
|
||||
)
|
||||
loss_fn_for_causal_lm = lambda x: x.loss
|
||||
loss_fn_for_classification = lambda x: x.loss
|
||||
loss_fn_for_question_answering = lambda x: x.loss
|
||||
|
||||
config = transformers.BloomConfig(n_layer=2,
|
||||
n_head=4,
|
||||
vocab_size=250880,
|
||||
hidden_dropout=0,
|
||||
attention_dropout=0,
|
||||
hidden_size=64,
|
||||
pad_token_id=50256)
|
||||
config = transformers.BloomConfig(
|
||||
n_layer=2, n_head=4, vocab_size=250880, hidden_dropout=0, attention_dropout=0, hidden_size=64, pad_token_id=50256
|
||||
)
|
||||
|
||||
# register the following models
|
||||
model_zoo.register(name='transformers_bloom',
|
||||
model_fn=lambda: transformers.BloomModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_bloom_model,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bloom_for_causal_lm',
|
||||
model_fn=lambda: transformers.BloomForCausalLM(config),
|
||||
data_gen_fn=data_gen_for_lm,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_causal_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bloom_for_sequence_classification',
|
||||
model_fn=lambda: transformers.BloomForSequenceClassification(config),
|
||||
data_gen_fn=data_gen_for_sequence_classification,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_classification,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bloom_for_token_classification',
|
||||
model_fn=lambda: transformers.BloomForTokenClassification(config),
|
||||
data_gen_fn=data_gen_for_token_classification,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_classification,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bloom_for_question_answering',
|
||||
model_fn=lambda: transformers.BloomForQuestionAnswering(config),
|
||||
data_gen_fn=data_gen_for_question_answering,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_question_answering,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(
|
||||
name="transformers_bloom",
|
||||
model_fn=lambda: transformers.BloomModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_bloom_model,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_bloom_for_causal_lm",
|
||||
model_fn=lambda: transformers.BloomForCausalLM(config),
|
||||
data_gen_fn=data_gen_for_lm,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_causal_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_bloom_for_sequence_classification",
|
||||
model_fn=lambda: transformers.BloomForSequenceClassification(config),
|
||||
data_gen_fn=data_gen_for_sequence_classification,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_classification,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_bloom_for_token_classification",
|
||||
model_fn=lambda: transformers.BloomForTokenClassification(config),
|
||||
data_gen_fn=data_gen_for_token_classification,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_classification,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_bloom_for_question_answering",
|
||||
model_fn=lambda: transformers.BloomForQuestionAnswering(config),
|
||||
data_gen_fn=data_gen_for_question_answering,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_question_answering,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
|
Reference in New Issue
Block a user