mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 21:09:18 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -4,7 +4,8 @@ import transformers
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
try:
|
||||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel
|
||||
from transformers import LlamaConfig
|
||||
|
||||
HAS_LLAMA = True
|
||||
except ImportError:
|
||||
HAS_LLAMA = False
|
||||
@@ -33,8 +34,8 @@ if HAS_LLAMA:
|
||||
# label is needed for casual lm
|
||||
def data_gen_for_casual_lm():
|
||||
data = data_gen()
|
||||
labels = data['input_ids'].clone()
|
||||
data['labels'] = labels
|
||||
labels = data["input_ids"].clone()
|
||||
data["labels"] = labels
|
||||
return data
|
||||
|
||||
# transform the output to a dict
|
||||
@@ -45,12 +46,14 @@ if HAS_LLAMA:
|
||||
loss_fn_for_casual_lm = lambda output: output.loss
|
||||
loss_fn_for_seq_classification = lambda output: output.logits.mean()
|
||||
|
||||
config = LlamaConfig(num_hidden_layers=4,
|
||||
hidden_size=128,
|
||||
intermediate_size=256,
|
||||
num_attention_heads=4,
|
||||
max_position_embeddings=128,
|
||||
num_labels=16)
|
||||
config = LlamaConfig(
|
||||
num_hidden_layers=4,
|
||||
hidden_size=128,
|
||||
intermediate_size=256,
|
||||
num_attention_heads=4,
|
||||
max_position_embeddings=128,
|
||||
num_labels=16,
|
||||
)
|
||||
|
||||
if hasattr(config, "pad_token_id"):
|
||||
config.pad_token_id = config.eos_token_id
|
||||
@@ -59,21 +62,27 @@ if HAS_LLAMA:
|
||||
# transformers.LlamaModel,
|
||||
# transformers.LlamaForCausalLM,
|
||||
# transformers.LlamaForSequenceClassification,
|
||||
model_zoo.register(name='transformers_llama',
|
||||
model_fn=lambda: transformers.LlamaModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_llama_for_casual_lm',
|
||||
model_fn=lambda: transformers.LlamaForCausalLM(config),
|
||||
data_gen_fn=data_gen_for_casual_lm,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_casual_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_llama_for_sequence_classification',
|
||||
model_fn=lambda: transformers.LlamaForSequenceClassification(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_seq_classification,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(
|
||||
name="transformers_llama",
|
||||
model_fn=lambda: transformers.LlamaModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_llama_for_casual_lm",
|
||||
model_fn=lambda: transformers.LlamaForCausalLM(config),
|
||||
data_gen_fn=data_gen_for_casual_lm,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_casual_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_llama_for_sequence_classification",
|
||||
model_fn=lambda: transformers.LlamaForSequenceClassification(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_seq_classification,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
|
Reference in New Issue
Block a user