mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 21:40:02 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -20,8 +20,8 @@ def data_gen_for_causal_lm():
|
||||
# LM data gen
|
||||
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
|
||||
data = data_gen()
|
||||
labels = data['input_ids'].clone()
|
||||
data['labels'] = labels
|
||||
labels = data["input_ids"].clone()
|
||||
data["labels"] = labels
|
||||
return data
|
||||
|
||||
|
||||
@@ -29,8 +29,8 @@ def data_gen_for_sequence_classification():
|
||||
# LM data gen
|
||||
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
|
||||
data = data_gen()
|
||||
labels = data['input_ids'].clone()
|
||||
data['labels'] = torch.tensor([1])
|
||||
data["input_ids"].clone()
|
||||
data["labels"] = torch.tensor([1])
|
||||
return data
|
||||
|
||||
|
||||
@@ -38,14 +38,15 @@ def data_gen_for_question_answering():
|
||||
# LM data gen
|
||||
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
|
||||
data = data_gen()
|
||||
data['start_positions'] = torch.tensor([0])
|
||||
data['end_positions'] = torch.tensor([1])
|
||||
data["start_positions"] = torch.tensor([0])
|
||||
data["end_positions"] = torch.tensor([1])
|
||||
return data
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
loss_fn_for_opt_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state, torch.ones_like(x.last_hidden_state)
|
||||
)
|
||||
loss_fn_for_opt_model = lambda x: torch.nn.functional.mse_loss(
|
||||
x.last_hidden_state, torch.ones_like(x.last_hidden_state)
|
||||
)
|
||||
loss_fn_for_lm = lambda x: x.loss
|
||||
config = transformers.OPTConfig(
|
||||
hidden_size=128,
|
||||
@@ -57,24 +58,30 @@ config = transformers.OPTConfig(
|
||||
# register the following models
|
||||
# transformers.OPTModel,
|
||||
# transformers.OPTForCausalLM,
|
||||
model_zoo.register(name='transformers_opt',
|
||||
model_fn=lambda: transformers.OPTModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_opt_model,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_opt_for_causal_lm',
|
||||
model_fn=lambda: transformers.OPTForCausalLM(config),
|
||||
data_gen_fn=data_gen_for_causal_lm,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_opt_for_question_answering',
|
||||
model_fn=lambda: transformers.OPTForQuestionAnswering(config),
|
||||
data_gen_fn=data_gen_for_question_answering,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(
|
||||
name="transformers_opt",
|
||||
model_fn=lambda: transformers.OPTModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_opt_model,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_opt_for_causal_lm",
|
||||
model_fn=lambda: transformers.OPTForCausalLM(config),
|
||||
data_gen_fn=data_gen_for_causal_lm,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_opt_for_question_answering",
|
||||
model_fn=lambda: transformers.OPTForQuestionAnswering(config),
|
||||
data_gen_fn=data_gen_for_question_answering,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
|
||||
# TODO The loss and gradient check in the test are failing, to be fixed.
|
||||
# model_zoo.register(name='transformers_opt_for_sequence_classification',
|
||||
|
Reference in New Issue
Block a user