mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -12,7 +12,6 @@ except:
|
||||
|
||||
|
||||
class LinearModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_features, out_features, bias):
|
||||
super().__init__()
|
||||
self.linear = torch.nn.Linear(in_features, out_features, bias=bias)
|
||||
@@ -23,25 +22,14 @@ class LinearModel(torch.nn.Module):
|
||||
|
||||
|
||||
class ConvModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_channel, out_channels, kernel_size, bias) -> None:
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Conv2d(in_channel,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
bias=bias,
|
||||
padding=1,
|
||||
stride=2,
|
||||
dilation=2,
|
||||
groups=3)
|
||||
self.conv_transpose = torch.nn.ConvTranspose2d(in_channel,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
bias=bias,
|
||||
padding=1,
|
||||
stride=2,
|
||||
dilation=2,
|
||||
groups=3)
|
||||
self.conv = torch.nn.Conv2d(
|
||||
in_channel, out_channels, kernel_size, bias=bias, padding=1, stride=2, dilation=2, groups=3
|
||||
)
|
||||
self.conv_transpose = torch.nn.ConvTranspose2d(
|
||||
in_channel, out_channels, kernel_size, bias=bias, padding=1, stride=2, dilation=2, groups=3
|
||||
)
|
||||
|
||||
def forward(self, x, select=0):
|
||||
if select == 0:
|
||||
@@ -52,7 +40,6 @@ class ConvModel(torch.nn.Module):
|
||||
|
||||
|
||||
class SiuModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, bias) -> None:
|
||||
super().__init__()
|
||||
self.linear = LinearModel(3, 3, bias)
|
||||
@@ -69,7 +56,6 @@ class SiuModel(torch.nn.Module):
|
||||
|
||||
|
||||
class AddmmModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, alpha, beta) -> None:
|
||||
super().__init__()
|
||||
self.alpha = alpha
|
||||
@@ -80,7 +66,7 @@ class AddmmModel(torch.nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
||||
@clear_cache_before_run()
|
||||
@parameterize("bias", [True, False])
|
||||
@parameterize("bias_addition_split", [True, False])
|
||||
@@ -89,19 +75,21 @@ class AddmmModel(torch.nn.Module):
|
||||
def test_siu_model(bias, bias_addition_split, shape, select):
|
||||
model = SiuModel(bias=bias)
|
||||
x = torch.rand(shape)
|
||||
gm = symbolic_trace(model,
|
||||
meta_args={'x': x},
|
||||
concrete_args={'select': select},
|
||||
trace_act_ckpt=True,
|
||||
bias_addition_split=bias_addition_split)
|
||||
assert torch.allclose(model(x, select), gm(x)), 'original model and traced model should be the same!'
|
||||
gm = symbolic_trace(
|
||||
model,
|
||||
meta_args={"x": x},
|
||||
concrete_args={"select": select},
|
||||
trace_act_ckpt=True,
|
||||
bias_addition_split=bias_addition_split,
|
||||
)
|
||||
assert torch.allclose(model(x, select), gm(x)), "original model and traced model should be the same!"
|
||||
if bias and bias_addition_split:
|
||||
assert '+' in gm.code, 'bias addition should be split!'
|
||||
assert "+" in gm.code, "bias addition should be split!"
|
||||
else:
|
||||
assert '+' not in gm.code, 'bias addition should not be split!'
|
||||
assert "+" not in gm.code, "bias addition should not be split!"
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
||||
@parameterize("alpha", [1, 2])
|
||||
@parameterize("beta", [1, 2])
|
||||
@parameterize("bias_addition_split", [True, False])
|
||||
@@ -109,14 +97,14 @@ def test_siu_model(bias, bias_addition_split, shape, select):
|
||||
def test_addmm_model(alpha, beta, bias_addition_split, shape):
|
||||
model = AddmmModel(alpha=alpha, beta=beta)
|
||||
x = torch.rand(shape)
|
||||
gm = symbolic_trace(model, meta_args={'x': x}, trace_act_ckpt=True, bias_addition_split=bias_addition_split)
|
||||
assert torch.allclose(model(x), gm(x)), 'original model and traced model should be the same!'
|
||||
gm = symbolic_trace(model, meta_args={"x": x}, trace_act_ckpt=True, bias_addition_split=bias_addition_split)
|
||||
assert torch.allclose(model(x), gm(x)), "original model and traced model should be the same!"
|
||||
if (alpha == 1 and beta == 1) or not bias_addition_split:
|
||||
assert '*' not in gm.code, 'bias addition should not be split!'
|
||||
assert "*" not in gm.code, "bias addition should not be split!"
|
||||
elif bias_addition_split:
|
||||
assert '+' in gm.code, 'bias addition should be split!'
|
||||
assert "+" in gm.code, "bias addition should be split!"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_siu_model()
|
||||
test_addmm_model()
|
||||
|
@@ -10,7 +10,6 @@ except:
|
||||
|
||||
|
||||
class LinearModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_features, out_features, bias):
|
||||
super().__init__()
|
||||
self.linear = torch.nn.Linear(in_features, out_features, bias=bias)
|
||||
@@ -21,25 +20,14 @@ class LinearModel(torch.nn.Module):
|
||||
|
||||
|
||||
class ConvModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_channel, out_channels, kernel_size, bias) -> None:
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Conv2d(in_channel,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
bias=bias,
|
||||
padding=1,
|
||||
stride=2,
|
||||
dilation=2,
|
||||
groups=3)
|
||||
self.conv_transpose = torch.nn.ConvTranspose2d(out_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
bias=bias,
|
||||
padding=1,
|
||||
stride=2,
|
||||
dilation=2,
|
||||
groups=3)
|
||||
self.conv = torch.nn.Conv2d(
|
||||
in_channel, out_channels, kernel_size, bias=bias, padding=1, stride=2, dilation=2, groups=3
|
||||
)
|
||||
self.conv_transpose = torch.nn.ConvTranspose2d(
|
||||
out_channels, out_channels, kernel_size, bias=bias, padding=1, stride=2, dilation=2, groups=3
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
@@ -48,7 +36,6 @@ class ConvModel(torch.nn.Module):
|
||||
|
||||
|
||||
class AModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, bias) -> None:
|
||||
super().__init__()
|
||||
self.linear_1 = LinearModel(3, 3, bias)
|
||||
@@ -63,7 +50,7 @@ class AModel(torch.nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='torch version < 12')
|
||||
@pytest.mark.skipif(torch.__version__ < "1.12.0", reason="torch version < 12")
|
||||
@clear_cache_before_run()
|
||||
@parameterize("bias", [True, False])
|
||||
@parameterize("bias_addition_split", [True, False])
|
||||
@@ -71,11 +58,11 @@ class AModel(torch.nn.Module):
|
||||
def test_mod_dir(bias, bias_addition_split, shape):
|
||||
model = AModel(bias=bias)
|
||||
x = torch.rand(shape)
|
||||
gm = symbolic_trace(model, meta_args={'x': x}, bias_addition_split=bias_addition_split)
|
||||
gm = symbolic_trace(model, meta_args={"x": x}, bias_addition_split=bias_addition_split)
|
||||
for node in gm.graph.nodes:
|
||||
assert len(node.meta['info'].mod_dir), f"{node} should have non-trivial ``mod_dir``."
|
||||
print(node, node.meta['info'].mod_dir)
|
||||
assert len(node.meta["info"].mod_dir), f"{node} should have non-trivial ``mod_dir``."
|
||||
print(node, node.meta["info"].mod_dir)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_mod_dir(bias=True, bias_addition_split=True, shape=(3, 3, 3))
|
||||
|
@@ -12,7 +12,6 @@ except:
|
||||
|
||||
|
||||
class MyModule(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.a = nn.Linear(10, 10)
|
||||
@@ -43,14 +42,14 @@ class MyModule(nn.Module):
|
||||
return checkpoint(self.checkpoint_0, x)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='torch version < 12')
|
||||
@pytest.mark.skipif(torch.__version__ < "1.12.0", reason="torch version < 12")
|
||||
@clear_cache_before_run()
|
||||
def test_nested_ckpt():
|
||||
model = MyModule()
|
||||
x = torch.rand(10, 10)
|
||||
gm = symbolic_trace(model, meta_args={'x': x}, trace_act_ckpt=True)
|
||||
gm = symbolic_trace(model, meta_args={"x": x}, trace_act_ckpt=True)
|
||||
assert torch.allclose(gm(x), model(x)), "The traced model should generate the same output as the original model."
|
||||
for ckpt_def in filter(lambda s: s.startswith('checkpoint'), dir(model)):
|
||||
for ckpt_def in filter(lambda s: s.startswith("checkpoint"), dir(model)):
|
||||
assert ckpt_def in gm.code, f"Checkpoint {ckpt_def} should be in the traced code.\n Traced code = {gm.code}"
|
||||
|
||||
|
||||
|
@@ -1,6 +1,5 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torchvision.models as tm
|
||||
from packaging import version
|
||||
|
||||
from colossalai.testing.utils import clear_cache_before_run, parameterize
|
||||
@@ -16,24 +15,25 @@ try:
|
||||
def linear_impl(*args, **kwargs):
|
||||
assert True
|
||||
return torch.nn.functional.linear(*args, **kwargs)
|
||||
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def _check_gm_validity(gm: torch.fx.GraphModule):
|
||||
for node in gm.graph.nodes:
|
||||
assert node.meta['info'].outputs, f'In {gm.__class__.__name__}, {node} has no output shape.'
|
||||
assert node.meta["info"].outputs, f"In {gm.__class__.__name__}, {node} has no output shape."
|
||||
if node.op in [
|
||||
'call_module', # can apply to params
|
||||
'call_function', # can apply to params
|
||||
'call_method', # can apply to params
|
||||
"call_module", # can apply to params
|
||||
"call_function", # can apply to params
|
||||
"call_method", # can apply to params
|
||||
]:
|
||||
assert hasattr(node.meta['info'], 'inputs'), f'In {gm.__class__.__name__}, {node} has no input shape.'
|
||||
assert hasattr(node.meta["info"], "inputs"), f"In {gm.__class__.__name__}, {node} has no input shape."
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
||||
@clear_cache_before_run()
|
||||
@parameterize('m', tm_models)
|
||||
@parameterize("m", tm_models)
|
||||
def test_torchvision_shape_prop(m):
|
||||
with MetaTensorMode():
|
||||
model = m()
|
||||
@@ -46,9 +46,9 @@ def test_torchvision_shape_prop(m):
|
||||
_check_gm_validity(gm)
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
||||
@clear_cache_before_run()
|
||||
@parameterize('m', tmm_models)
|
||||
@parameterize("m", tmm_models)
|
||||
def test_timm_shape_prop(m):
|
||||
with MetaTensorMode():
|
||||
model = m()
|
||||
|
@@ -1,6 +1,5 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torchvision.models as tm
|
||||
from packaging import version
|
||||
|
||||
from colossalai.testing.utils import clear_cache_before_run, parameterize
|
||||
@@ -15,12 +14,12 @@ except:
|
||||
|
||||
def _check_gm_validity(gm: torch.fx.GraphModule):
|
||||
for node in gm.graph.nodes:
|
||||
assert len(node.meta['info'].global_ctx), f'In {gm.__class__.__name__}, {node} has empty global context.'
|
||||
assert len(node.meta["info"].global_ctx), f"In {gm.__class__.__name__}, {node} has empty global context."
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
||||
@clear_cache_before_run()
|
||||
@parameterize('m', tm_models)
|
||||
@parameterize("m", tm_models)
|
||||
def test_torchvision_profile(m, verbose=False, bias_addition_split=False):
|
||||
with MetaTensorMode():
|
||||
model = m()
|
||||
@@ -33,9 +32,9 @@ def test_torchvision_profile(m, verbose=False, bias_addition_split=False):
|
||||
_check_gm_validity(gm)
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
||||
@clear_cache_before_run()
|
||||
@parameterize('m', tmm_models)
|
||||
@parameterize("m", tmm_models)
|
||||
def test_timm_profile(m, verbose=False, bias_addition_split=False):
|
||||
with MetaTensorMode():
|
||||
model = m()
|
||||
|
@@ -14,35 +14,41 @@ except:
|
||||
aten = torch.ops.aten
|
||||
|
||||
registered_meta = {
|
||||
('aten.convolution.default', True): [ # (aten ops, requires_backward)
|
||||
("aten.convolution.default", True): [ # (aten ops, requires_backward)
|
||||
(nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
|
||||
(nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4)),
|
||||
(nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4, 4)),
|
||||
(nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
|
||||
(nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2, padding=1,
|
||||
dilation=2), torch.rand(2, 3, 4, 4)),
|
||||
(nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2, padding=1,
|
||||
dilation=2), torch.rand(2, 3, 4, 4, 4)),
|
||||
(
|
||||
nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2),
|
||||
torch.rand(2, 3, 4, 4),
|
||||
),
|
||||
(
|
||||
nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2),
|
||||
torch.rand(2, 3, 4, 4, 4),
|
||||
),
|
||||
],
|
||||
('aten.native_batch_norm.default', True): [
|
||||
("aten.native_batch_norm.default", True): [
|
||||
(nn.BatchNorm1d(4), torch.rand(2, 4)),
|
||||
(nn.BatchNorm2d(4), torch.rand(1, 4, 4, 4)),
|
||||
(nn.BatchNorm3d(4), torch.rand(1, 4, 4, 4, 4)),
|
||||
],
|
||||
('aten.native_layer_norm.default', True): [(nn.LayerNorm(4), torch.rand(1, 2, 3, 4)),],
|
||||
('aten.avg_pool1d.default', True): [
|
||||
("aten.native_layer_norm.default", True): [
|
||||
(nn.LayerNorm(4), torch.rand(1, 2, 3, 4)),
|
||||
],
|
||||
("aten.avg_pool1d.default", True): [
|
||||
(nn.MaxPool1d(3, stride=2), torch.rand(4, 5, 5)),
|
||||
(nn.AvgPool1d(3, stride=2), torch.rand(4, 5, 5)),
|
||||
(nn.AdaptiveMaxPool1d(3), torch.rand(4, 5, 5)),
|
||||
(nn.AdaptiveAvgPool1d(3), torch.rand(4, 5, 5)),
|
||||
],
|
||||
('aten.avg_pool2d.default', True): [
|
||||
("aten.avg_pool2d.default", True): [
|
||||
(nn.MaxPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
|
||||
(nn.AvgPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
|
||||
(nn.AdaptiveMaxPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
|
||||
(nn.AdaptiveAvgPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
|
||||
],
|
||||
('aten.relu.default', True): [
|
||||
("aten.relu.default", True): [
|
||||
(nn.ReLU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.LeakyReLU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.SiLU(), torch.rand(4, 3, 1, 2)),
|
||||
@@ -51,15 +57,20 @@ registered_meta = {
|
||||
(nn.Sigmoid(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.Tanh(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.Hardswish(), torch.rand(4, 3, 1, 2)),
|
||||
]
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
def compare_all(tensor: torch.Tensor, meta_tensor: torch.Tensor) -> Any:
|
||||
assert tensor.shape == meta_tensor.shape, f'the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match.'
|
||||
assert tensor.dtype == meta_tensor.dtype, f'the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match.'
|
||||
assert tensor.stride() == meta_tensor.stride(
|
||||
), f'the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match.'
|
||||
assert (
|
||||
tensor.shape == meta_tensor.shape
|
||||
), f"the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match."
|
||||
assert (
|
||||
tensor.dtype == meta_tensor.dtype
|
||||
), f"the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match."
|
||||
assert (
|
||||
tensor.stride() == meta_tensor.stride()
|
||||
), f"the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match."
|
||||
|
||||
|
||||
def run_and_compare(f: Union[nn.Module, Callable], x: torch.Tensor, requires_backward=False) -> Any:
|
||||
@@ -73,7 +84,7 @@ def run_and_compare(f: Union[nn.Module, Callable], x: torch.Tensor, requires_bac
|
||||
compare_all(x.grad, meta_x.grad)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='torch version < 12')
|
||||
@pytest.mark.skipif(torch.__version__ < "1.12.0", reason="torch version < 12")
|
||||
@clear_cache_before_run()
|
||||
def test_meta_aten():
|
||||
for (aten_op, requires_backward), v in registered_meta.items():
|
||||
@@ -81,5 +92,5 @@ def test_meta_aten():
|
||||
run_and_compare(f, x, requires_backward)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_meta_aten()
|
||||
|
@@ -4,7 +4,6 @@ import torch.nn.functional as F
|
||||
import torchvision.models as tm
|
||||
from packaging import version
|
||||
|
||||
from colossalai.testing import clear_cache_before_run, parameterize
|
||||
from tests.test_analyzer.test_fx.zoo import tm_models, tmm_models
|
||||
|
||||
try:
|
||||
@@ -13,40 +12,44 @@ except:
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
|
||||
@pytest.mark.parametrize('m', tm_models + tmm_models)
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
||||
@pytest.mark.parametrize("m", tm_models + tmm_models)
|
||||
def test_flop_count_module(m):
|
||||
x = torch.rand(2, 3, 224, 224)
|
||||
with MetaTensorMode(): # save time for testing
|
||||
with MetaTensorMode(): # save time for testing
|
||||
module = m()
|
||||
rs_fwd, rs_bwd = flop_count(module, x, verbose=True)
|
||||
assert rs_fwd > 0, f'fwd flop count of {m.__name__} is {rs_fwd}'
|
||||
assert rs_bwd > 0, f'bwd flop count of {m.__name__} is {rs_bwd}'
|
||||
assert rs_fwd > 0, f"fwd flop count of {m.__name__} is {rs_fwd}"
|
||||
assert rs_bwd > 0, f"bwd flop count of {m.__name__} is {rs_bwd}"
|
||||
|
||||
|
||||
odd_cases = [
|
||||
(F.relu, (torch.rand(2, 3, 224, 224, requires_grad=True),), {
|
||||
'inplace': True
|
||||
}),
|
||||
(F.max_pool2d, (torch.rand(2, 3, 224, 224, requires_grad=True),), {
|
||||
'kernel_size': 3,
|
||||
'stride': 2,
|
||||
'padding': 1,
|
||||
'dilation': 2
|
||||
}),
|
||||
(torch.where, (torch.rand(2, 3, 224, 224) > 0.5, torch.rand(2, 3, 224, 224, requires_grad=True),
|
||||
torch.rand(2, 3, 224, 224, requires_grad=True)), {}),
|
||||
(F.relu, (torch.rand(2, 3, 224, 224, requires_grad=True),), {"inplace": True}),
|
||||
(
|
||||
F.max_pool2d,
|
||||
(torch.rand(2, 3, 224, 224, requires_grad=True),),
|
||||
{"kernel_size": 3, "stride": 2, "padding": 1, "dilation": 2},
|
||||
),
|
||||
(
|
||||
torch.where,
|
||||
(
|
||||
torch.rand(2, 3, 224, 224) > 0.5,
|
||||
torch.rand(2, 3, 224, 224, requires_grad=True),
|
||||
torch.rand(2, 3, 224, 224, requires_grad=True),
|
||||
),
|
||||
{},
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
|
||||
@pytest.mark.parametrize('func, args, kwargs', odd_cases)
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
||||
@pytest.mark.parametrize("func, args, kwargs", odd_cases)
|
||||
def test_flop_count_function(func, args, kwargs):
|
||||
rs_fwd, rs_bwd = flop_count(func, *args, **kwargs, verbose=True)
|
||||
assert rs_fwd > 0, f'fwd flop count of {func.__name__} is {rs_fwd}'
|
||||
assert rs_bwd > 0, f'bwd flop count of {func.__name__} is {rs_bwd}'
|
||||
assert rs_fwd > 0, f"fwd flop count of {func.__name__} is {rs_fwd}"
|
||||
assert rs_bwd > 0, f"bwd flop count of {func.__name__} is {rs_bwd}"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_flop_count_module(tm.resnet18)
|
||||
test_flop_count_function(F.relu, (torch.rand(2, 3, 224, 224, requires_grad=True),), {'inplace': True})
|
||||
test_flop_count_function(F.relu, (torch.rand(2, 3, 224, 224, requires_grad=True),), {"inplace": True})
|
||||
|
@@ -6,17 +6,22 @@ from packaging import version
|
||||
from colossalai.testing import clear_cache_before_run, parameterize
|
||||
|
||||
try:
|
||||
from colossalai._analyzer._subclasses import MetaTensor, MetaTensorMode
|
||||
from colossalai._analyzer._subclasses import MetaTensorMode
|
||||
except:
|
||||
pass
|
||||
from tests.test_analyzer.test_fx.zoo import tm_models, tmm_models
|
||||
|
||||
|
||||
def compare_all(tensor: torch.Tensor, meta_tensor: torch.Tensor):
|
||||
assert tensor.shape == meta_tensor.shape, f'the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match.'
|
||||
assert tensor.dtype == meta_tensor.dtype, f'the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match.'
|
||||
assert tensor.stride() == meta_tensor.stride(
|
||||
), f'the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match.'
|
||||
assert (
|
||||
tensor.shape == meta_tensor.shape
|
||||
), f"the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match."
|
||||
assert (
|
||||
tensor.dtype == meta_tensor.dtype
|
||||
), f"the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match."
|
||||
assert (
|
||||
tensor.stride() == meta_tensor.stride()
|
||||
), f"the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match."
|
||||
|
||||
|
||||
def run_and_compare(model):
|
||||
@@ -31,12 +36,12 @@ def run_and_compare(model):
|
||||
compare_all(x.grad, meta_x.grad)
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12")
|
||||
@clear_cache_before_run()
|
||||
@parameterize('m', tm_models + tmm_models)
|
||||
@parameterize("m", tm_models + tmm_models)
|
||||
def test_meta_mode_shape(m):
|
||||
run_and_compare(m())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_meta_mode_shape(tm.resnet18)
|
||||
|
Reference in New Issue
Block a user