[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -19,50 +19,30 @@ from colossalai.testing import (
from tests.kit.model_zoo import model_zoo
MODEL_PLACEMENT_CONFIGS = [
{
'placement_policy': 'static',
'shard_param_frac': 0.0
}, # zero2
{
'placement_policy': 'static',
'shard_param_frac': 1.0
}, # zero3
{
'placement_policy': 'static',
'shard_param_frac': 0.5
}, # zero3-half
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half
]
OPTIM_PLACEMENT_CONFIGS = [
{
'placement_policy': 'static',
'shard_param_frac': 0.0,
'offload_optim_frac': 0.0
}, # zero2
{
'placement_policy': 'static',
'shard_param_frac': 0.0,
'offload_optim_frac': 1.0
}, # zero2-offload
{
'placement_policy': 'static',
'shard_param_frac': 0.0,
'offload_optim_frac': 0.5
}, # zero2-offload-half
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0}, # zero2-offload
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half
]
@clear_cache_before_run()
@parameterize('placement_config', MODEL_PLACEMENT_CONFIGS)
@parameterize('model_name', ['transformers_bert_for_sequence_classification'])
@parameterize('use_safetensors', [False, True])
@parameterize("placement_config", MODEL_PLACEMENT_CONFIGS)
@parameterize("model_name", ["transformers_bert_for_sequence_classification"])
@parameterize("use_safetensors", [False, True])
def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool):
from transformers import BertForSequenceClassification
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
bert_model = model_fn()
with shared_tempdir() as tempdir:
pretrained_path = os.path.join(tempdir, 'pretrained')
pretrained_path = os.path.join(tempdir, "pretrained")
bert_model.config.save_pretrained(save_directory=pretrained_path)
plugin = GeminiPlugin(**placement_config)
@@ -70,24 +50,22 @@ def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: b
bert_model, _, _, _, _ = booster.boost(bert_model)
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
booster.save_model(bert_model,
pretrained_path,
True,
True,
'', (model_size / 3),
use_safetensors=use_safetensors)
booster.save_model(
bert_model, pretrained_path, True, True, "", (model_size / 3), use_safetensors=use_safetensors
)
dist.barrier()
new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path)
check_state_dict_equal(bert_model.state_dict(only_rank_0=False, dtype=torch.float32),
new_bert_model.state_dict(), False)
check_state_dict_equal(
bert_model.state_dict(only_rank_0=False, dtype=torch.float32), new_bert_model.state_dict(), False
)
@clear_cache_before_run()
@parameterize('placement_config', OPTIM_PLACEMENT_CONFIGS)
@parameterize('shard', [False, True])
@parameterize('model_name', ['transformers_gpt'])
@parameterize('size_per_shard', [32])
@parameterize("placement_config", OPTIM_PLACEMENT_CONFIGS)
@parameterize("shard", [False, True])
@parameterize("model_name", ["transformers_gpt"])
@parameterize("size_per_shard", [32])
def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int):
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean()
@@ -102,7 +80,7 @@ def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_sha
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
data = data_gen_fn()
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()}
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
@@ -123,13 +101,14 @@ def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_sha
check_state_dict_equal(model.state_dict(only_rank_0=False), new_model.state_dict(only_rank_0=False), False)
booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(only_rank_0=False),
False)
check_state_dict_equal(
optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(only_rank_0=False), False
)
# Check the new model/optimizer can successfully run.
data = data_gen_fn()
data = {
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
}
output = new_model(**data)
output = output_transform_fn(output)
@@ -143,13 +122,13 @@ def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_sha
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_state_dict()
exam_state_dict_with_origin()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_gemini_ckpIO(world_size):
spawn(run_dist, world_size)