[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -19,10 +19,9 @@ from tests.kit.model_zoo import model_zoo
@clear_cache_before_run()
@parameterize('shard', [False, True])
@parameterize('model_name', ['transformers_gpt'])
@parameterize("shard", [False, True])
@parameterize("model_name", ["transformers_gpt"])
def exam_torch_load_from_gemini(shard: bool, model_name: str):
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean()
plugin = GeminiPlugin(precision="fp16", initial_scale=(2**14))
@@ -33,7 +32,7 @@ def exam_torch_load_from_gemini(shard: bool, model_name: str):
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data = data_gen_fn()
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()}
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
@@ -60,8 +59,11 @@ def exam_torch_load_from_gemini(shard: bool, model_name: str):
new_booster.load_model(new_model, model_ckpt_path, strict=True)
# Add prefix to get aligned with pytorch parameter names.
check_state_dict_equal(model.state_dict(only_rank_0=False, prefix='module.module.', dtype=torch.float32),
new_model.state_dict(), False)
check_state_dict_equal(
model.state_dict(only_rank_0=False, prefix="module.module.", dtype=torch.float32),
new_model.state_dict(),
False,
)
new_booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(), False)
@@ -69,7 +71,7 @@ def exam_torch_load_from_gemini(shard: bool, model_name: str):
# Check the new model/optimizer can successfully run.
data = data_gen_fn()
data = {
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
}
output = new_model(**data)
output = output_transform_fn(output)
@@ -82,10 +84,9 @@ def exam_torch_load_from_gemini(shard: bool, model_name: str):
@clear_cache_before_run()
@parameterize('shard', [False, True])
@parameterize('model_name', ['transformers_gpt'])
@parameterize("shard", [False, True])
@parameterize("model_name", ["transformers_gpt"])
def exam_gemini_load_from_torch(shard: bool, model_name: str):
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean()
plugin = TorchDDPPlugin()
@@ -96,7 +97,7 @@ def exam_gemini_load_from_torch(shard: bool, model_name: str):
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data = data_gen_fn()
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()}
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
@@ -123,8 +124,11 @@ def exam_gemini_load_from_torch(shard: bool, model_name: str):
new_booster.load_model(new_model, model_ckpt_path, strict=True)
# Add prefix to get aligned with pytorch parameter names.
check_state_dict_equal(new_model.state_dict(only_rank_0=False, prefix='module.module.', dtype=torch.float32),
model.state_dict(), False)
check_state_dict_equal(
new_model.state_dict(only_rank_0=False, prefix="module.module.", dtype=torch.float32),
model.state_dict(),
False,
)
new_booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
old_state_dict = optimizer.state_dict()
@@ -132,18 +136,19 @@ def exam_gemini_load_from_torch(shard: bool, model_name: str):
# Comparison of param_groups needs special care here,
# since not all hyperparameters in Adam are used by HybridAdam
hyperparameters_to_examine = ['params', 'lr', 'betas', 'eps', 'weight_decay']
for old_group, new_group in zip(old_state_dict['param_groups'], new_state_dict['param_groups']):
hyperparameters_to_examine = ["params", "lr", "betas", "eps", "weight_decay"]
for old_group, new_group in zip(old_state_dict["param_groups"], new_state_dict["param_groups"]):
for k in hyperparameters_to_examine:
assert k in old_group and k in new_group, \
f"Old group's keys: {list(old_group.keys())}, New group's keys: {list(new_group.keys())}"
assert (
k in old_group and k in new_group
), f"Old group's keys: {list(old_group.keys())}, New group's keys: {list(new_group.keys())}"
assert old_group[k] == new_group[k]
check_state_dict_equal(old_state_dict['state'], new_state_dict['state'], False)
check_state_dict_equal(old_state_dict["state"], new_state_dict["state"], False)
# Check the new model/optimizer can successfully run.
data = data_gen_fn()
data = {
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
}
output = new_model(**data)
output = output_transform_fn(output)
@@ -157,13 +162,13 @@ def exam_gemini_load_from_torch(shard: bool, model_name: str):
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_torch_load_from_gemini()
exam_gemini_load_from_torch()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_gemini_ckpIO(world_size):
spawn(run_dist, world_size)