[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -5,7 +5,6 @@ import torch
from torch.optim import Adam
from torchvision.models import resnet18
from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO
from colossalai.checkpoint_io import GeneralCheckpointIO
from colossalai.testing import check_state_dict_equal, clear_cache_before_run, parameterize
@@ -18,7 +17,7 @@ from colossalai.testing import check_state_dict_equal, clear_cache_before_run, p
@clear_cache_before_run()
@parameterize('use_safetensors', [True, False])
@parameterize("use_safetensors", [True, False])
def test_unsharded_checkpoint(use_safetensors: bool):
# create a model and optimizer
model = resnet18()
@@ -59,7 +58,7 @@ def test_unsharded_checkpoint(use_safetensors: bool):
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
@pytest.mark.parametrize('use_safetensors', [True, False])
@pytest.mark.parametrize("use_safetensors", [True, False])
def test_sharded_model_checkpoint(use_safetensors: bool):
# create a model and optimizer
model = resnet18()
@@ -75,11 +74,9 @@ def test_sharded_model_checkpoint(use_safetensors: bool):
# create a temp file for checkpoint
if use_safetensors:
suffix = ".safetensors"
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
pass
else:
suffix = ".bin"
WEIGHTS_INDEX_NAME = "model.bin.index.json"
pass
model_ckpt_dir = tempfile.TemporaryDirectory()
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
@@ -103,7 +100,6 @@ def test_sharded_model_checkpoint(use_safetensors: bool):
def test_sharded_optimizer_checkpoint():
# create a model and optimizer
model = resnet18()
optimizer = Adam(model.parameters(), lr=0.001)
@@ -162,16 +158,11 @@ def test_sharded_optimizer_checkpoint():
def test_sharded_optimizer_multiple_param_groups():
# create a model and optimizer
model = resnet18()
optimizer = Adam([{
'params': model.layer1.parameters()
}, {
'params': model.layer2.parameters(),
'lr': 0.002
}],
lr=0.001)
optimizer = Adam(
[{"params": model.layer1.parameters()}, {"params": model.layer2.parameters(), "lr": 0.002}], lr=0.001
)
# create test data sample
x = torch.randn(1, 3, 224, 224)
@@ -194,13 +185,9 @@ def test_sharded_optimizer_multiple_param_groups():
# create new model
new_model = resnet18()
new_optimizer = Adam([{
'params': new_model.layer1.parameters()
}, {
'params': new_model.layer2.parameters(),
'lr': 0.002
}],
lr=0.001)
new_optimizer = Adam(
[{"params": new_model.layer1.parameters()}, {"params": new_model.layer2.parameters(), "lr": 0.002}], lr=0.001
)
ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True)
ckpt_io.load_optimizer(new_optimizer, str(optimizer_ckpt_dir.name))