[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,26 +1,29 @@
import torch
import torch.nn as nn
from transformers import GPT2Config, GPT2LMHeadModel
class GPTLMModel(nn.Module):
def __init__(self,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_seq_len=1024,
vocab_size=50257,
checkpoint=False):
def __init__(
self,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_seq_len=1024,
vocab_size=50257,
checkpoint=False,
):
super().__init__()
self.checkpoint = checkpoint
self.model = GPT2LMHeadModel(
GPT2Config(n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size))
GPT2Config(
n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size,
)
)
if checkpoint:
self.model.gradient_checkpointing_enable()
@@ -30,7 +33,6 @@ class GPTLMModel(nn.Module):
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()

View File

@@ -1,9 +1,9 @@
from typing import Optional, Tuple, Union
from typing import Tuple
import torch
import torch.fx
import torchvision.models as tm
from gpt_utils import gpt2_medium, gpt2_xl
from gpt_utils import gpt2_medium
from torch.fx import symbolic_trace
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
@@ -33,18 +33,18 @@ def extract_forward_flops(gm: torch.fx.GraphModule):
fwd_flop = 0
bwd_flop = 0
for node in gm.graph.nodes:
fwd_flop += node.meta.get('fwd_flop', 0)
bwd_flop += node.meta.get('bwd_flop', 0)
fwd_flop += node.meta.get("fwd_flop", 0)
bwd_flop += node.meta.get("bwd_flop", 0)
return fwd_flop, bwd_flop
def gen_tm_data(batch_size: int, shape: Tuple[int, int, int], device='cuda'):
def gen_tm_data(batch_size: int, shape: Tuple[int, int, int], device="cuda"):
data = torch.rand(batch_size, *shape, device=device)
label = torch.empty(batch_size, dtype=torch.long, device=device).random_(1000)
return data, label
def gen_gpt_data(batch_size, seq_len, vocab_size, device='cpu'):
def gen_gpt_data(batch_size, seq_len, vocab_size, device="cpu"):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=device)
attention_mask = torch.ones_like(input_ids, device=device)
return input_ids, attention_mask
@@ -96,7 +96,7 @@ def run_gpt_forward(gm: torch.fx.GraphModule):
param_mem += torch.cuda.memory_allocated(device="cuda:0") / 1024**2
for n in range(NUM_STEPS):
torch.cuda.reset_peak_memory_stats()
data, mask = gen_gpt_data(GPT_BATCH_SIZE, 1024, 50257, device='cuda:0')
data, mask = gen_gpt_data(GPT_BATCH_SIZE, 1024, 50257, device="cuda:0")
# If we need to dive deep into the memory usage by
# inspecting `saved_tensor_hooks`
@@ -125,21 +125,56 @@ def run_gpt_forward(gm: torch.fx.GraphModule):
return forward_mem, param_mem
@run_on_environment_flag(name='FX_PROFILER')
@run_on_environment_flag(name="FX_PROFILER")
@clear_cache_before_run()
def test_meta_info_prop():
for m in [
tm.alexnet, tm.resnet18, tm.resnet34, tm.resnet50, tm.resnet101, tm.resnet152, tm.densenet121,
tm.densenet161, tm.densenet169, tm.densenet201, tm.convnext_tiny, tm.convnext_small, tm.convnext_base,
tm.convnext_large, tm.wide_resnet50_2, tm.wide_resnet101_2, tm.regnet_x_16gf, tm.mnasnet0_5,
tm.efficientnet_b0, tm.shufflenet_v2_x0_5, tm.shufflenet_v2_x1_0, tm.shufflenet_v2_x1_5,
tm.shufflenet_v2_x2_0, tm.mobilenet_v2, tm.mobilenet_v3_small, tm.mobilenet_v3_large, tm.resnext50_32x4d,
tm.resnext101_32x8d, tm.resnext101_64x4d, tm.vit_b_16, tm.vit_b_32, tm.vit_h_14, tm.vit_l_16, tm.vit_l_32,
tm.vgg11, tm.vgg11_bn, tm.vgg13, tm.vgg13_bn, tm.vgg16, tm.vgg16_bn, tm.vgg19, tm.vgg19_bn
tm.alexnet,
tm.resnet18,
tm.resnet34,
tm.resnet50,
tm.resnet101,
tm.resnet152,
tm.densenet121,
tm.densenet161,
tm.densenet169,
tm.densenet201,
tm.convnext_tiny,
tm.convnext_small,
tm.convnext_base,
tm.convnext_large,
tm.wide_resnet50_2,
tm.wide_resnet101_2,
tm.regnet_x_16gf,
tm.mnasnet0_5,
tm.efficientnet_b0,
tm.shufflenet_v2_x0_5,
tm.shufflenet_v2_x1_0,
tm.shufflenet_v2_x1_5,
tm.shufflenet_v2_x2_0,
tm.mobilenet_v2,
tm.mobilenet_v3_small,
tm.mobilenet_v3_large,
tm.resnext50_32x4d,
tm.resnext101_32x8d,
tm.resnext101_64x4d,
tm.vit_b_16,
tm.vit_b_32,
tm.vit_h_14,
tm.vit_l_16,
tm.vit_l_32,
tm.vgg11,
tm.vgg11_bn,
tm.vgg13,
tm.vgg13_bn,
tm.vgg16,
tm.vgg16_bn,
tm.vgg19,
tm.vgg19_bn,
]:
model = m().cuda()
model.train()
data = MetaTensor(torch.rand(int(TM_BATCH_SIZE), 3, 224, 224, device='meta'), fake_device='cuda:0')
data = MetaTensor(torch.rand(int(TM_BATCH_SIZE), 3, 224, 224, device="meta"), fake_device="cuda:0")
gm = symbolic_trace(model)
interp = MetaInfoProp(gm)
interp.propagate(data)
@@ -150,22 +185,22 @@ def test_meta_info_prop():
concrete_forward_mem, concrete_param_mem = run_tm_forward(gm)
print(
f'|{m.__name__}|{meta_forward_mem:.3f} MB|{meta_param_mem:.3f} MB|{concrete_forward_mem:.3f} MB|{concrete_param_mem:.3f} MB|fwd_flop={fwd_flop / 1e9:.3f}GFLOPs|bwd_flop={bwd_flop / 1e9:.3f}GFLOPs|'
f"|{m.__name__}|{meta_forward_mem:.3f} MB|{meta_param_mem:.3f} MB|{concrete_forward_mem:.3f} MB|{concrete_param_mem:.3f} MB|fwd_flop={fwd_flop / 1e9:.3f}GFLOPs|bwd_flop={bwd_flop / 1e9:.3f}GFLOPs|"
)
del model, gm
@run_on_environment_flag(name='FX_PROFILER')
@run_on_environment_flag(name="FX_PROFILER")
@clear_cache_before_run()
def test_gpt_meta_info_prop():
for m in [gpt2_medium]:
model = m().cuda()
model.train()
data, mask = gen_gpt_data(GPT_BATCH_SIZE, 1024, 50257, device='meta')
graph = ColoTracer().trace(model, meta_args={'input_ids': data, 'attention_mask': mask})
data, mask = gen_gpt_data(GPT_BATCH_SIZE, 1024, 50257, device="meta")
graph = ColoTracer().trace(model, meta_args={"input_ids": data, "attention_mask": mask})
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(MetaTensor(data, fake_device='cuda:0'), MetaTensor(mask, fake_device='cuda:0'))
interp.propagate(MetaTensor(data, fake_device="cuda:0"), MetaTensor(mask, fake_device="cuda:0"))
model.cpu()
fwd_flop, bwd_flop = extract_forward_flops(gm)
@@ -174,11 +209,11 @@ def test_gpt_meta_info_prop():
meta_forward_mem, meta_param_mem = extract_forward_mem(gm)
print(
f'|{m.__name__}|{meta_forward_mem:.3f} MB|{meta_param_mem:.3f} MB|{concrete_forward_mem:.3f} MB|{concrete_param_mem:.3f} MB|fwd_flop={fwd_flop / 1e9:.3f}GFLOPs|bwd_flop={bwd_flop / 1e9:.3f}GFLOPs|'
f"|{m.__name__}|{meta_forward_mem:.3f} MB|{meta_param_mem:.3f} MB|{concrete_forward_mem:.3f} MB|{concrete_param_mem:.3f} MB|fwd_flop={fwd_flop / 1e9:.3f}GFLOPs|bwd_flop={bwd_flop / 1e9:.3f}GFLOPs|"
)
del model, gm
if __name__ == '__main__':
if __name__ == "__main__":
test_meta_info_prop()
test_gpt_meta_info_prop()