[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,19 +1,18 @@
import math
import numpy as np
import torch
from torch.nn import functional as F
def torch_context_attention(xq, xk, xv, bs, seqlen, num_head, head_dim):
'''
adepted from https://github.com/ModelTC/lightllm/blob/main/lightllm/models/bloom/triton_kernel/context_flashattention_nopad.py#L253
'''
"""
adepted from https://github.com/ModelTC/lightllm/blob/main/lightllm/models/bloom/triton_kernel/context_flashattention_nopad.py#L253
"""
xq = xq.view(bs, seqlen, num_head, head_dim)
xk = xk.view(bs, seqlen, num_head, head_dim)
xv = xv.view(bs, seqlen, num_head, head_dim)
mask = torch.tril(torch.ones(seqlen, seqlen), diagonal=0).unsqueeze(0).unsqueeze(0).cuda()
mask[mask == 0.] = -100000000.0
mask[mask == 0.0] = -100000000.0
mask = mask.repeat(bs, num_head, 1, 1)
keys = xk
values = xv

View File

@@ -1,27 +1,24 @@
import math
import pytest
import torch
from packaging import version
from torch import nn
from torch.nn import functional as F
try:
import triton
import triton.language as tl
pass
from colossalai.kernel.triton import bloom_context_attn_fwd
from tests.test_infer_ops.triton.kernel_utils import torch_context_attention
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_bloom_context_attention():
bs = 4
head_num = 8
@@ -46,8 +43,9 @@ def test_bloom_context_attention():
torch_out = torch_context_attention(query.clone(), k.clone(), v.clone(), bs, seq_len, head_num, head_dim)
assert torch.allclose(torch_out.cpu(), o.cpu(), rtol=1e-3,
atol=1e-2), "outputs from triton and torch are not matched"
assert torch.allclose(
torch_out.cpu(), o.cpu(), rtol=1e-3, atol=1e-2
), "outputs from triton and torch are not matched"
if __name__ == "__main__":

View File

@@ -1,25 +1,24 @@
import pytest
import torch
from packaging import version
from torch import nn
try:
import triton
import triton.language as tl
pass
from colossalai.kernel.triton.copy_kv_cache_dest import copy_kv_cache_to_dest
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_kv_cache_copy_op():
B_NTX = 32 * 2048
head_num = 8
head_dim = 64
@@ -31,8 +30,9 @@ def test_kv_cache_copy_op():
copy_kv_cache_to_dest(cache, dest_index, dest_data)
assert torch.allclose(cache.cpu(), dest_data.cpu(), rtol=1e-3,
atol=1e-3), "copy_kv_cache_to_dest outputs from triton and torch are not matched"
assert torch.allclose(
cache.cpu(), dest_data.cpu(), rtol=1e-3, atol=1e-3
), "copy_kv_cache_to_dest outputs from triton and torch are not matched"
if __name__ == "__main__":

View File

@@ -6,30 +6,29 @@ from colossalai.kernel.triton import layer_norm
from colossalai.testing.utils import parameterize
try:
import triton
import triton.language as tl
pass
from colossalai.kernel.triton.fused_layernorm import _layer_norm_fwd_fused
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
@parameterize('M', [2, 4, 8, 16])
@parameterize('N', [64, 128])
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
@parameterize("M", [2, 4, 8, 16])
@parameterize("N", [64, 128])
def test_layer_norm(M, N):
dtype = torch.float16
eps = 1e-5
x_shape = (M, N)
w_shape = (x_shape[-1],)
weight = torch.rand(w_shape, dtype=dtype, device='cuda')
bias = torch.rand(w_shape, dtype=dtype, device='cuda')
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
weight = torch.rand(w_shape, dtype=dtype, device="cuda")
bias = torch.rand(w_shape, dtype=dtype, device="cuda")
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
y_triton = layer_norm(x, weight, bias, eps)
y_torch = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)

View File

@@ -1,27 +1,24 @@
import math
import pytest
import torch
from packaging import version
from torch import nn
from torch.nn import functional as F
try:
import triton
import triton.language as tl
pass
from colossalai.kernel.triton import llama_context_attn_fwd
from tests.test_infer_ops.triton.kernel_utils import torch_context_attention
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_llama_context_attention():
bs = 4
head_num = 8
@@ -45,8 +42,9 @@ def test_llama_context_attention():
torch_out = torch_context_attention(query.clone(), k.clone(), v.clone(), bs, seq_len, head_num, head_dim)
assert torch.allclose(torch_out.cpu(), o.cpu(), rtol=1e-3,
atol=1e-3), "outputs from triton and torch are not matched"
assert torch.allclose(
torch_out.cpu(), o.cpu(), rtol=1e-3, atol=1e-3
), "outputs from triton and torch are not matched"
if __name__ == "__main__":

View File

@@ -1,14 +1,12 @@
# Adapted from ModelTC https://github.com/ModelTC/lightllm
import time
import pytest
import torch
from packaging import version
try:
import triton
import triton.language as tl
pass
from colossalai.kernel.triton.rotary_embedding_kernel import rotary_embedding_fwd
@@ -17,13 +15,13 @@ except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
def torch_rotary_emb(x, cos, sin):
seq_len, h, dim = x.shape
x0 = x[:, :, 0:dim // 2]
x1 = x[:, :, dim // 2:dim]
x0 = x[:, :, 0 : dim // 2]
x1 = x[:, :, dim // 2 : dim]
cos = cos.view((seq_len, 1, dim // 2))
sin = sin.view((seq_len, 1, dim // 2))
o0 = x0 * cos - x1 * sin
@@ -31,8 +29,9 @@ def torch_rotary_emb(x, cos, sin):
return torch.cat((o0, o1), dim=-1)
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_rotary_emb():
SEQ_LEN = 1
HEAD_NUM = 32
@@ -40,10 +39,10 @@ def test_rotary_emb():
dtype = torch.half
# create data
x_shape = (SEQ_LEN, HEAD_NUM, HEAD_DIM)
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
cos_shape = (SEQ_LEN, HEAD_DIM // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device='cuda')
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device='cuda')
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
# forward pass
y_torch = torch_rotary_emb(x, cos, sin)
rotary_embedding_fwd(x, cos, sin)

View File

@@ -1,24 +1,27 @@
import pytest
from packaging import version
import torch
from torch import nn
import torch.nn.functional as F
from packaging import version
try:
import triton
import triton.language as tl
from colossalai.kernel.triton.self_attention_nofusion import self_attention_compute_using_triton
from colossalai.kernel.triton.qkv_matmul_kernel import qkv_gemm_4d_kernel
from colossalai.kernel.triton.self_attention_nofusion import self_attention_compute_using_triton
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_qkv_matmul():
qkv = torch.randn((4, 24, 64*3), device="cuda", dtype=torch.float16)
qkv = torch.randn((4, 24, 64 * 3), device="cuda", dtype=torch.float16)
scale = 1.2
head_size = 32
batches = qkv.shape[0]
@@ -26,7 +29,7 @@ def test_qkv_matmul():
num_of_heads = d_model // head_size
q = qkv[:, :, :d_model]
k = qkv[:, :, d_model:d_model * 2]
k = qkv[:, :, d_model : d_model * 2]
q = q.view(batches, -1, num_of_heads, head_size)
k = k.view(batches, -1, num_of_heads, head_size)
@@ -36,29 +39,40 @@ def test_qkv_matmul():
k = torch.transpose(k, 1, 2).contiguous()
k = torch.transpose(k, 2, 3).contiguous()
torch_ouput = torch.einsum('bnij,bnjk->bnik', q, k)
torch_ouput = torch.einsum("bnij,bnjk->bnik", q, k)
torch_ouput *= 1.2
q, k = q_copy, k_copy
batches, M, H, K = q.shape
N = k.shape[1]
score_output = torch.empty(
(batches, H, M, N), device=q.device, dtype=q.dtype)
score_output = torch.empty((batches, H, M, N), device=q.device, dtype=q.dtype)
grid = lambda meta: (
batches,
H,
triton.cdiv(M, meta["BLOCK_SIZE_M"]) *
triton.cdiv(N, meta["BLOCK_SIZE_N"]),
triton.cdiv(M, meta["BLOCK_SIZE_M"]) * triton.cdiv(N, meta["BLOCK_SIZE_N"]),
)
K = q.shape[3]
qkv_gemm_4d_kernel[grid](
q, k, score_output,
M, N, K,
q.stride(0), q.stride(2), q.stride(1), q.stride(3),
k.stride(0), k.stride(2), k.stride(3), k.stride(1),
score_output.stride(0), score_output.stride(1), score_output.stride(2), score_output.stride(3),
q,
k,
score_output,
M,
N,
K,
q.stride(0),
q.stride(2),
q.stride(1),
q.stride(3),
k.stride(0),
k.stride(2),
k.stride(3),
k.stride(1),
score_output.stride(0),
score_output.stride(1),
score_output.stride(2),
score_output.stride(3),
scale=scale,
# currently manually setting, later on we can use auto-tune config to match best setting
BLOCK_SIZE_M=64,
@@ -69,21 +83,16 @@ def test_qkv_matmul():
check = torch.allclose(torch_ouput.cpu(), score_output.cpu(), rtol=1e-3, atol=1e-5)
assert check is True, "the outputs of triton and torch are not matched"
def self_attention_compute_using_torch(qkv,
input_mask,
scale,
head_size
):
def self_attention_compute_using_torch(qkv, input_mask, scale, head_size):
batches = qkv.shape[0]
d_model = qkv.shape[-1] // 3
num_of_heads = d_model // head_size
q = qkv[:, :, :d_model]
k = qkv[:, :, d_model:d_model * 2]
v = qkv[:, :, d_model * 2:]
k = qkv[:, :, d_model : d_model * 2]
v = qkv[:, :, d_model * 2 :]
q = q.view(batches, -1, num_of_heads, head_size)
k = k.view(batches, -1, num_of_heads, head_size)
v = v.view(batches, -1, num_of_heads, head_size)
@@ -94,37 +103,36 @@ def self_attention_compute_using_torch(qkv,
k = torch.transpose(k, -1, -2).contiguous()
score_output = torch.einsum('bnij,bnjk->bnik', q, k)
score_output = torch.einsum("bnij,bnjk->bnik", q, k)
score_output *= scale
softmax_output = F.softmax(score_output, dim = -1)
res = torch.einsum('bnij,bnjk->bnik', softmax_output, v)
softmax_output = F.softmax(score_output, dim=-1)
res = torch.einsum("bnij,bnjk->bnik", softmax_output, v)
res = torch.transpose(res, 1, 2)
res = res.contiguous()
return res.view(batches, -1, d_model), score_output, softmax_output
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4")
def test_self_atttention_test():
qkv = torch.randn((4, 24, 64*3), device="cuda", dtype=torch.float16)
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_self_atttention_test():
qkv = torch.randn((4, 24, 64 * 3), device="cuda", dtype=torch.float16)
data_output_torch, score_output_torch, softmax_output_torch = self_attention_compute_using_torch(
qkv.clone(),
input_mask = None,
scale = 1.2,
head_size = 32
)
qkv.clone(), input_mask=None, scale=1.2, head_size=32
)
data_output_triton = self_attention_compute_using_triton(
qkv.clone(),
alibi=None,
head_size=32,
scale=1.2,
input_mask=None,
layer_past=None,
use_flash=False,
triangular=True)
qkv.clone(),
alibi=None,
head_size=32,
scale=1.2,
input_mask=None,
layer_past=None,
use_flash=False,
triangular=True,
)
check = torch.allclose(data_output_triton.cpu(), data_output_torch.cpu(), rtol=1e-4, atol=1e-2)
assert check is True, "the triton output is not matched with torch output"
@@ -132,4 +140,4 @@ def test_self_atttention_test():
if __name__ == "__main__":
test_qkv_matmul()
test_self_atttention_test()
test_self_atttention_test()

View File

@@ -1,30 +1,31 @@
import pytest
from packaging import version
import torch
from packaging import version
from torch import nn
try:
import triton
import triton.language as tl
from colossalai.kernel.triton.softmax import softmax
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_softmax_op():
data_samples = [
torch.randn((3, 4, 5, 32), device = "cuda", dtype = torch.float32),
torch.randn((320, 320, 78), device = "cuda", dtype = torch.float32),
torch.randn((2345, 4, 5, 64), device = "cuda", dtype = torch.float16)
]
torch.randn((3, 4, 5, 32), device="cuda", dtype=torch.float32),
torch.randn((320, 320, 78), device="cuda", dtype=torch.float32),
torch.randn((2345, 4, 5, 64), device="cuda", dtype=torch.float16),
]
for data in data_samples:
module = nn.Softmax(dim = -1)
module = nn.Softmax(dim=-1)
data_torch_out = module(data)
data_triton_out = softmax(data)
check = torch.allclose(data_torch_out.cpu(), data_triton_out.cpu(), rtol=1e-3, atol=1e-3)
@@ -32,4 +33,4 @@ def test_softmax_op():
if __name__ == "__main__":
test_softmax_op()
test_softmax_op()

View File

@@ -5,16 +5,16 @@ import torch
from packaging import version
try:
import triton
import triton.language as tl
pass
from colossalai.kernel.triton.token_attention_kernel import token_attn_fwd_1
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
def torch_attn(xq, xk, bs, seqlen, num_head, head_dim):
@@ -23,8 +23,9 @@ def torch_attn(xq, xk, bs, seqlen, num_head, head_dim):
keys = xk
xq = xq.transpose(1, 2)
keys = keys.transpose(1, 2)
scores = (torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(head_dim)).squeeze().transpose(0, 1).reshape(
num_head, -1)
scores = (
(torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(head_dim)).squeeze().transpose(0, 1).reshape(num_head, -1)
)
return scores
@@ -37,10 +38,11 @@ def torch_attn_1(xq, xk, seqlen, num_head, head_dim):
return logics
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_attn_1():
import time
pass
batch_size, seq_len, head_num, head_dim = 17, 1025, 12, 128

View File

@@ -1,20 +1,18 @@
import math
import pytest
import torch
from packaging import version
try:
import triton
import triton.language as tl
pass
from colossalai.kernel.triton.token_attention_kernel import token_attn_fwd_2
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
def torch_attn(V, P, bs, seqlen, num_head, head_dim):
@@ -25,19 +23,23 @@ def torch_attn(V, P, bs, seqlen, num_head, head_dim):
return attn_out
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_token_attn_2():
import time
pass
batch_size, seq_len, head_num, head_dim = 17, 1025, 12, 128
dtype = torch.float16
V = torch.empty((batch_size * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=10)
Prob = torch.empty(
(head_num, batch_size * seq_len), dtype=dtype,
device="cuda").normal_(mean=0.4, std=0.2).reshape(head_num, batch_size,
seq_len).softmax(-1).reshape(head_num, batch_size * seq_len)
Prob = (
torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda")
.normal_(mean=0.4, std=0.2)
.reshape(head_num, batch_size, seq_len)
.softmax(-1)
.reshape(head_num, batch_size * seq_len)
)
attn_out = torch.empty((batch_size, head_num, head_dim), dtype=dtype, device="cuda")
kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")

View File

@@ -1,20 +1,18 @@
import time
import pytest
import torch
from packaging import version
try:
import triton
import triton.language as tl
pass
from colossalai.kernel.triton.token_attention_kernel import token_attention_fwd
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
def torch_att(xq, xk, xv, bs, seqlen, num_head, head_dim):
@@ -29,10 +27,10 @@ def torch_att(xq, xk, xv, bs, seqlen, num_head, head_dim):
return torch.sum(prob * xv, dim=1, keepdim=False)
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test():
Z, head_num, seq_len, head_dim = 22, 112 // 8, 2048, 128
dtype = torch.float16
q = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)

View File

@@ -3,22 +3,22 @@ import torch
from packaging import version
try:
import triton
import triton.language as tl
pass
from colossalai.kernel.triton.token_attention_kernel import token_attn_softmax_fwd
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_softmax():
import torch
batch_size, seq_len, head_num, head_dim = 4, 1025, 12, 128