[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -4,7 +4,6 @@
import os
from pathlib import Path
import pytest
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
@@ -15,7 +14,7 @@ def test_cifar10_dataset():
transform_pipeline = transforms.Compose(transform_pipeline)
# build dataset
dataset = datasets.CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_pipeline)
dataset = datasets.CIFAR10(root=Path(os.environ["DATA"]), train=True, download=True, transform=transform_pipeline)
# build dataloader
dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True, num_workers=2)
@@ -23,5 +22,5 @@ def test_cifar10_dataset():
img, label = data_iter.next()
if __name__ == '__main__':
if __name__ == "__main__":
test_cifar10_dataset()

View File

@@ -4,7 +4,6 @@
import os
from pathlib import Path
import pytest
import torch
import torch.distributed as dist
from torchvision import datasets, transforms
@@ -16,24 +15,26 @@ from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.utils import get_dataloader
from colossalai.testing import rerun_if_address_is_in_use, spawn
CONFIG = Config(dict(
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None),
),
seed=1024,
))
CONFIG = Config(
dict(
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None),
),
seed=1024,
)
)
def run_data_sampler(rank, world_size, port):
dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost')
dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend="gloo", port=port, host="localhost")
colossalai.legacy.launch(**dist_args)
print('finished initialization')
print("finished initialization")
# build dataset
transform_pipeline = [transforms.ToTensor()]
transform_pipeline = transforms.Compose(transform_pipeline)
dataset = datasets.CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_pipeline)
dataset = datasets.CIFAR10(root=Path(os.environ["DATA"]), train=True, download=True, transform=transform_pipeline)
# build dataloader
dataloader = get_dataloader(dataset, batch_size=8, add_sampler=True)
@@ -50,7 +51,8 @@ def run_data_sampler(rank, world_size, port):
if gpc.get_local_rank(ParallelMode.DATA) != 0:
assert not torch.equal(
img, img_to_compare), 'Same image was distributed across ranks but expected it to be different'
img, img_to_compare
), "Same image was distributed across ranks but expected it to be different"
torch.cuda.empty_cache()
@@ -59,5 +61,5 @@ def test_data_sampler():
spawn(run_data_sampler, 4)
if __name__ == '__main__':
if __name__ == "__main__":
test_data_sampler()

View File

@@ -4,7 +4,6 @@
import os
from pathlib import Path
import pytest
import torch
import torch.distributed as dist
from torchvision import datasets, transforms
@@ -20,8 +19,8 @@ CONFIG = Config(
dict(
train_data=dict(
dataset=dict(
type='CIFAR10',
root=Path(os.environ['DATA']),
type="CIFAR10",
root=Path(os.environ["DATA"]),
train=True,
download=True,
),
@@ -32,17 +31,18 @@ CONFIG = Config(
tensor=dict(size=1, mode=None),
),
seed=1024,
))
)
)
def run_data_sampler(rank, world_size, port):
dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost')
dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend="gloo", port=port, host="localhost")
colossalai.legacy.launch(**dist_args)
# build dataset
transform_pipeline = [transforms.ToTensor(), transforms.RandomCrop(size=32, padding=4)]
transform_pipeline = transforms.Compose(transform_pipeline)
dataset = datasets.CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_pipeline)
dataset = datasets.CIFAR10(root=Path(os.environ["DATA"]), train=True, download=True, transform=transform_pipeline)
# build dataloader
dataloader = get_dataloader(dataset, batch_size=8, add_sampler=False)
@@ -60,8 +60,9 @@ def run_data_sampler(rank, world_size, port):
if gpc.get_local_rank(ParallelMode.DATA) != 0:
# this is without sampler
# this should be false if data parallel sampler to given to the dataloader
assert torch.equal(img,
img_to_compare), 'Same image was distributed across ranks and expected it to be the same'
assert torch.equal(
img, img_to_compare
), "Same image was distributed across ranks and expected it to be the same"
torch.cuda.empty_cache()
@@ -70,5 +71,5 @@ def test_data_sampler():
spawn(run_data_sampler, 4)
if __name__ == '__main__':
if __name__ == "__main__":
test_data_sampler()