mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 12:30:42 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -25,7 +25,7 @@ rpc_is_initialized = _is_current_rpc_agent_set
|
||||
def create_partition_module(pp_rank: int, stage_num: int, model, data_kwargs):
|
||||
model.eval()
|
||||
tracer = ColoTracer()
|
||||
meta_args = {k: v.to('meta') for k, v in data_kwargs.items()}
|
||||
meta_args = {k: v.to("meta") for k, v in data_kwargs.items()}
|
||||
graph = tracer.trace(root=model, meta_args=meta_args)
|
||||
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
|
||||
annotated_model = balanced_split_pass(gm, stage_num)
|
||||
@@ -33,7 +33,7 @@ def create_partition_module(pp_rank: int, stage_num: int, model, data_kwargs):
|
||||
topo = get_fx_topology(top_module)
|
||||
for submodule in split_submodules:
|
||||
if isinstance(submodule, torch.fx.GraphModule):
|
||||
setattr(submodule, '_topo', topo)
|
||||
setattr(submodule, "_topo", topo)
|
||||
return split_submodules[pp_rank + 1]
|
||||
|
||||
|
||||
@@ -47,11 +47,11 @@ def run_master(model_cls, world_size, forward_only):
|
||||
torch.manual_seed(100)
|
||||
|
||||
epoch = 3
|
||||
device = 'cuda'
|
||||
device = "cuda"
|
||||
stage_num = world_size
|
||||
chunk = 1
|
||||
num_microbatches = 8
|
||||
use_checkpoint = 'store_true'
|
||||
use_checkpoint = "store_true"
|
||||
|
||||
if model_cls == MLP:
|
||||
|
||||
@@ -92,29 +92,26 @@ def run_master(model_cls, world_size, forward_only):
|
||||
checkpoint=use_checkpoint,
|
||||
)
|
||||
if not forward_only:
|
||||
engine.initialize_optimizer(getattr(torch.optim, 'SGD'), lr=1e-3)
|
||||
engine.initialize_optimizer(getattr(torch.optim, "SGD"), lr=1e-3)
|
||||
|
||||
for _ in range(epoch):
|
||||
input_x = torch.randn((batch_size, dim), device=device)
|
||||
input_y = torch.randn((batch_size, dim), device=device)
|
||||
logits = engine.forward_backward({'x': input_x, 'y': input_y}, labels=labels, forward_only=forward_only)
|
||||
logits = engine.forward_backward({"x": input_x, "y": input_y}, labels=labels, forward_only=forward_only)
|
||||
|
||||
|
||||
def run_worker(rank, world_size, port, model_cls, forward_only, master_func):
|
||||
master_addr = 'localhost'
|
||||
master_addr = "localhost"
|
||||
master_port = 29020
|
||||
os.environ['MASTER_ADDR'] = master_addr
|
||||
os.environ['MASTER_PORT'] = str(master_port)
|
||||
os.environ["MASTER_ADDR"] = master_addr
|
||||
os.environ["MASTER_PORT"] = str(master_port)
|
||||
|
||||
disable_existing_loggers()
|
||||
|
||||
launch(dict(), rank, world_size, master_addr, master_port, 'nccl', verbose=False)
|
||||
ppg.set_global_info(rank=rank,
|
||||
world_size=world_size,
|
||||
dp_degree=1,
|
||||
tp_degree=1,
|
||||
num_worker_threads=128,
|
||||
device='cuda')
|
||||
launch(dict(), rank, world_size, master_addr, master_port, "nccl", verbose=False)
|
||||
ppg.set_global_info(
|
||||
rank=rank, world_size=world_size, dp_degree=1, tp_degree=1, num_worker_threads=128, device="cuda"
|
||||
)
|
||||
|
||||
# in rpc mode, only rank 0 is needed to be coded
|
||||
if rank == 0:
|
||||
@@ -125,8 +122,8 @@ def run_worker(rank, world_size, port, model_cls, forward_only, master_func):
|
||||
|
||||
|
||||
@pytest.mark.skip("skip due to CI torch version 1.11")
|
||||
@parameterize('model_cls', [MLP, DAG_MLP])
|
||||
@parameterize('forward_only', [True, False])
|
||||
@parameterize("model_cls", [MLP, DAG_MLP])
|
||||
@parameterize("forward_only", [True, False])
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_pp_middleware_fwd(model_cls, forward_only):
|
||||
|
Reference in New Issue
Block a user