[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -23,12 +23,12 @@ def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.f
# Here we do not need TF32, since it brings absolute error on results
torch.backends.cuda.matmul.allow_tf32 = False
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
MOE_CONTEXT.setup(42) # MOE environment initialization
MOE_CONTEXT.setup(42) # MOE environment initialization
MOE_CONTEXT.reset_loss()
torch.manual_seed(rs + local_rank) # set each process has different random seed
torch.manual_seed(rs + local_rank) # set each process has different random seed
# get randomized data
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
@@ -46,7 +46,7 @@ def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.f
old_out, _ = layer(tokens)
ech = old_out.shape
grad = torch.randn(ech, device=get_current_device())
old_out.backward(grad) # get gradient
old_out.backward(grad) # get gradient
# save all results
o_tk_grad = tokens.grad.data.clone()
@@ -57,7 +57,7 @@ def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.f
layer.gate_weight.grad.zero_()
layer.use_kernel = True
new_out, _ = layer(tokens) # get outputs through colossal kernel
new_out, _ = layer(tokens) # get outputs through colossal kernel
if data_type == torch.float32:
check_equal(old_out, new_out)
@@ -65,7 +65,7 @@ def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.f
check_equal(old_out, new_out, 1e-2)
# forward function passed
new_out.backward(grad) # get new type gradient
new_out.backward(grad) # get new type gradient
n_tk_grad = tokens.grad.data.clone()
n_gt_grad = layer.gate_weight.grad.data.clone()
@@ -92,5 +92,5 @@ def test_moe_kernel(rs, hidden_size, data_type, router):
spawn(run_routing, 4, rs=rs, hidden_size=hidden_size, data_type=data_type, router=router)
if __name__ == '__main__':
if __name__ == "__main__":
test_moe_kernel(2, 256, torch.float16, Top2Router)