[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,6 +1,5 @@
import pytest
import torch
from torch import distributed as dist
import colossalai
from colossalai.logging import disable_existing_loggers
@@ -21,53 +20,37 @@ from tests.test_shardformer.test_model._utils import (
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
model_fn, loss_fn, test_config
)
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = \
build_model_from_hybrid_plugin(model_fn, loss_fn, test_config)
org_loss, org_output, sharded_loss, sharded_output = \
run_forward_backward_with_hybrid_plugin(
org_model,
sharded_model,
sharded_optimizer,
data_gen_fn,
output_transform_fn,
criterion,
booster)
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
)
stage_manager = booster.plugin.stage_manager
tp_group = booster.plugin.tp_group
# unwrap model
gpt2 = unwrap_model(org_model, 'GPT2Model', 'transformer')
sharded_gpt2 = unwrap_model(sharded_model, 'GPT2Model', 'transformer')
gpt2 = unwrap_model(org_model, "GPT2Model", "transformer")
sharded_gpt2 = unwrap_model(sharded_model, "GPT2Model", "transformer")
col_layer_for_check = ['h[0].mlp.c_fc']
row_layer_for_check = ['wte', 'h[0].mlp.c_proj']
col_layer_for_check = ["h[0].mlp.c_fc"]
row_layer_for_check = ["wte", "h[0].mlp.c_proj"]
# Save gradient tensors for comparison between the original model and the sharded model.
grads_to_check = {}
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
if test_config['precision'] == 'fp32':
if test_config["precision"] == "fp32":
atol, rtol = 1e-4, 1e-3
else:
atol, rtol = 5e-3, 5e-3
col_layer_grads = get_grad_tensors_for_check(gpt2,
sharded_gpt2,
col_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=1,
verbose=False)
row_layer_grads = get_grad_tensors_for_check(gpt2,
sharded_gpt2,
row_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=0,
verbose=False)
col_layer_grads = get_grad_tensors_for_check(
gpt2, sharded_gpt2, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False
)
row_layer_grads = get_grad_tensors_for_check(
gpt2, sharded_gpt2, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False
)
grads_to_check.update(col_layer_grads)
grads_to_check.update(row_layer_grads)
@@ -77,19 +60,19 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
# check last hidden state & loss
if stage_manager is None or stage_manager.is_last_stage():
if test_config['precision'] == 'fp32':
if test_config["precision"] == "fp32":
atol, rtol = 1e-5, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if org_model.__class__.__name__ == 'GPT2Model':
if org_model.__class__.__name__ == "GPT2Model":
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
# check weights
if stage_manager is None or stage_manager.is_first_stage():
if test_config['precision'] == 'fp32':
if test_config["precision"] == "fp32":
atol, rtol = 5e-3, 1e-3
else:
atol, rtol = 5e-3, 5e-3
@@ -102,63 +85,73 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
torch.cuda.empty_cache()
@parameterize('test_config', [{
'tp_size': 2,
'pp_size': 2,
'num_microbatches': 4,
'enable_all_optimization': True,
'use_lazy_init': True,
'precision': 'fp16',
'initial_scale': 1,
}, {
'tp_size': 1,
'pp_size': 2,
'num_microbatches': 4,
'enable_all_optimization': True,
'use_lazy_init': True,
'precision': 'fp16',
'initial_scale': 1,
}, {
'tp_size': 4,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32',
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32',
}, {
'tp_size': 2,
'pp_size': 2,
'num_microbatches': 4,
'enable_all_optimization': True,
'use_lazy_init': True,
'precision': 'fp32',
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': True,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}, {
'tp_size': 1,
'pp_size': 2,
'num_microbatches': 2,
'enable_all_optimization': True,
'use_lazy_init': True,
'zero_stage': 1,
'precision': 'fp16',
'initial_scale': 1
}])
@parameterize(
"test_config",
[
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": True,
"use_lazy_init": True,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 1,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": True,
"use_lazy_init": True,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 4,
"pp_size": 1,
"enable_all_optimization": True,
"use_lazy_init": False,
"precision": "fp32",
},
{
"tp_size": 2,
"pp_size": 1,
"enable_all_optimization": True,
"use_lazy_init": False,
"precision": "fp32",
},
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": True,
"use_lazy_init": True,
"precision": "fp32",
},
{
"tp_size": 2,
"pp_size": 1,
"enable_all_optimization": True,
"use_lazy_init": True,
"zero_stage": 2,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 1,
"pp_size": 2,
"num_microbatches": 2,
"enable_all_optimization": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
],
)
@clear_cache_before_run()
def run_gpt2_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
sub_model_zoo = model_zoo.get_sub_registry("transformers_gpt")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
@@ -167,30 +160,33 @@ def run_gpt2_test(test_config):
torch.cuda.empty_cache()
@parameterize('test_config', [
{
'tp_size': 2,
'pp_size': 2,
'num_microbatches': 4,
'enable_all_optimization': False,
'use_lazy_init': False,
'precision': 'fp32',
'initial_scale': 1,
},
{
'tp_size': 2,
'pp_size': 2,
'num_microbatches': 4,
'enable_all_optimization': False,
'use_lazy_init': False,
'precision': 'fp16',
'zero_stage': 1,
'initial_scale': 1,
},
])
@parameterize(
"test_config",
[
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp32",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp16",
"zero_stage": 1,
"initial_scale": 1,
},
],
)
@clear_cache_before_run()
def run_gpt2_3d_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
sub_model_zoo = model_zoo.get_sub_registry("transformers_gpt")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
@@ -201,13 +197,13 @@ def run_gpt2_3d_test(test_config):
def check_gpt2(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_gpt2_test()
def check_gpt2_3d(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_gpt2_3d_test()