mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -12,54 +12,53 @@ CUDA_MEM_1 = {False: 0, True: 1024}
|
||||
CPU_MEM = {True: {True: 0, False: 0}, False: {True: 512, False: 0}}
|
||||
|
||||
|
||||
@parameterize('keep_gathered', [True, False])
|
||||
@parameterize('pin_memory', [True, False])
|
||||
@parameterize("keep_gathered", [True, False])
|
||||
@parameterize("pin_memory", [True, False])
|
||||
def exam_chunk_memory(keep_gathered, pin_memory):
|
||||
|
||||
params = [ColoTensor(torch.rand(8, 8)) for _ in range(3)]
|
||||
config = {2: dict(chunk_size=128, keep_gathered=keep_gathered)}
|
||||
|
||||
chunk_manager = ChunkManager(config)
|
||||
assert chunk_manager.total_mem['cpu'] == 0
|
||||
assert chunk_manager.total_mem['cuda'] == 0
|
||||
assert chunk_manager.total_mem["cpu"] == 0
|
||||
assert chunk_manager.total_mem["cuda"] == 0
|
||||
|
||||
process_group = _get_default_group()
|
||||
for p in params:
|
||||
chunk_manager.register_tensor(p, 'param', 2, process_group, pin_memory=pin_memory)
|
||||
chunk_manager.register_tensor(p, "param", 2, process_group, pin_memory=pin_memory)
|
||||
chunk_manager.close_all_groups()
|
||||
assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory]
|
||||
assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[keep_gathered]
|
||||
assert chunk_manager.total_mem["cpu"] == CPU_MEM[keep_gathered][pin_memory]
|
||||
assert chunk_manager.total_mem["cuda"] == CUDA_MEM_0[keep_gathered]
|
||||
|
||||
chunks = chunk_manager.get_chunks(params)
|
||||
|
||||
for chunk in chunks:
|
||||
chunk_manager.access_chunk(chunk)
|
||||
assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory]
|
||||
assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[True]
|
||||
assert chunk_manager.total_mem["cpu"] == CPU_MEM[keep_gathered][pin_memory]
|
||||
assert chunk_manager.total_mem["cuda"] == CUDA_MEM_0[True]
|
||||
|
||||
for chunk in chunks:
|
||||
chunk_manager.release_chunk(chunk)
|
||||
|
||||
assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory]
|
||||
assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[keep_gathered]
|
||||
assert chunk_manager.total_mem["cpu"] == CPU_MEM[keep_gathered][pin_memory]
|
||||
assert chunk_manager.total_mem["cuda"] == CUDA_MEM_0[keep_gathered]
|
||||
|
||||
for chunk in chunks:
|
||||
chunk_manager.move_chunk(chunk, torch.device('cpu'))
|
||||
assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][True]
|
||||
assert chunk_manager.total_mem['cuda'] == CUDA_MEM_1[keep_gathered]
|
||||
chunk_manager.move_chunk(chunk, torch.device("cpu"))
|
||||
assert chunk_manager.total_mem["cpu"] == CPU_MEM[keep_gathered][True]
|
||||
assert chunk_manager.total_mem["cuda"] == CUDA_MEM_1[keep_gathered]
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_chunk_memory()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [2])
|
||||
@pytest.mark.parametrize("world_size", [2])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_chunk_manager(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_chunk_manager(2)
|
||||
|
@@ -31,26 +31,28 @@ def check_equal(param, param_cp):
|
||||
return torch.equal(temp, param_cp.data)
|
||||
|
||||
|
||||
@parameterize('init_device', [None, torch.device('cpu')])
|
||||
@parameterize('keep_gathered', [True, False])
|
||||
@parameterize('pin_memory', [True, False])
|
||||
@parameterize("init_device", [None, torch.device("cpu")])
|
||||
@parameterize("keep_gathered", [True, False])
|
||||
@parameterize("pin_memory", [True, False])
|
||||
def exam_chunk_basic(init_device, keep_gathered, pin_memory):
|
||||
world_size = torch.distributed.get_world_size()
|
||||
pg = _get_default_group()
|
||||
my_chunk = Chunk(chunk_size=1024,
|
||||
process_group=pg,
|
||||
dtype=torch.float32,
|
||||
init_device=init_device,
|
||||
cpu_shard_init=True,
|
||||
keep_gathered=keep_gathered,
|
||||
pin_memory=pin_memory)
|
||||
my_chunk = Chunk(
|
||||
chunk_size=1024,
|
||||
process_group=pg,
|
||||
dtype=torch.float32,
|
||||
init_device=init_device,
|
||||
cpu_shard_init=True,
|
||||
keep_gathered=keep_gathered,
|
||||
pin_memory=pin_memory,
|
||||
)
|
||||
|
||||
param_list = []
|
||||
param_cp_list = []
|
||||
|
||||
add_param(param_list, param_cp_list, 8, 8, 8, device='cuda')
|
||||
add_param(param_list, param_cp_list, 8, 8, 8, device="cuda")
|
||||
add_param(param_list, param_cp_list, 4, 4)
|
||||
add_param(param_list, param_cp_list, 4, 8, 2, device='cuda')
|
||||
add_param(param_list, param_cp_list, 4, 8, 2, device="cuda")
|
||||
add_param(param_list, param_cp_list, 1, 1, 5)
|
||||
|
||||
for param in param_list:
|
||||
@@ -62,12 +64,12 @@ def exam_chunk_basic(init_device, keep_gathered, pin_memory):
|
||||
|
||||
if keep_gathered is False:
|
||||
assert my_chunk.cpu_shard.size(0) == 1024 // world_size
|
||||
assert my_chunk.device_type == 'cpu'
|
||||
assert my_chunk.device_type == "cpu"
|
||||
assert my_chunk.can_move
|
||||
my_chunk.shard_move(get_current_device())
|
||||
else:
|
||||
assert my_chunk.cuda_global_chunk.size(0) == 1024
|
||||
assert my_chunk.device_type == 'cuda'
|
||||
assert my_chunk.device_type == "cuda"
|
||||
assert not my_chunk.can_move
|
||||
|
||||
assert dist_sum(my_chunk.valid_end) == my_chunk.utilized_size
|
||||
@@ -75,7 +77,7 @@ def exam_chunk_basic(init_device, keep_gathered, pin_memory):
|
||||
assert not flag, "has_inf_or_nan is {}".format(flag)
|
||||
|
||||
my_chunk.access_chunk()
|
||||
assert my_chunk.device_type == 'cuda'
|
||||
assert my_chunk.device_type == "cuda"
|
||||
for param, param_cp in zip(param_list, param_cp_list):
|
||||
check_equal(param, param_cp)
|
||||
|
||||
@@ -97,25 +99,25 @@ def exam_chunk_basic(init_device, keep_gathered, pin_memory):
|
||||
|
||||
if keep_gathered is False:
|
||||
assert my_chunk.cuda_shard.size(0) == 1024 // world_size
|
||||
assert my_chunk.device_type == 'cuda'
|
||||
assert my_chunk.device_type == "cuda"
|
||||
assert my_chunk.can_move
|
||||
else:
|
||||
assert my_chunk.cuda_global_chunk.size(0) == 1024
|
||||
assert my_chunk.device_type == 'cuda'
|
||||
assert my_chunk.device_type == "cuda"
|
||||
assert not my_chunk.can_move
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_chunk_basic()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 2, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 2, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_chunk_function(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_chunk_function(4)
|
||||
|
@@ -16,21 +16,10 @@ from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 1.0
|
||||
}, # zero3
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.5
|
||||
}, # zero3-half
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
|
||||
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3
|
||||
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half
|
||||
{"placement_policy": "auto"},
|
||||
]
|
||||
|
||||
|
||||
@@ -41,14 +30,14 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
for chunk in chunk_list:
|
||||
chunk_manager.access_chunk(chunk)
|
||||
|
||||
for (p0, p1) in zip(model.parameters(), torch_model.parameters()):
|
||||
for p0, p1 in zip(model.parameters(), torch_model.parameters()):
|
||||
assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('keep_gather', [False, True])
|
||||
@parameterize('model_name', ['gpt2', 'bert', 'albert'])
|
||||
@parameterize('use_grad_checkpoint', [False, True])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("keep_gather", [False, True])
|
||||
@parameterize("model_name", ["gpt2", "bert", "albert"])
|
||||
@parameterize("use_grad_checkpoint", [False, True])
|
||||
def exam_gpt_fwd_bwd(
|
||||
placement_config,
|
||||
keep_gather,
|
||||
@@ -69,14 +58,14 @@ def exam_gpt_fwd_bwd(
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = keep_gather
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = keep_gather
|
||||
model = GeminiDDP(model, config_dict, init_device, pin_memory=True, **placement_config)
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=1)
|
||||
|
||||
rank = dist.get_rank()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1)
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=1)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[rank])
|
||||
@@ -105,16 +94,16 @@ def exam_gpt_fwd_bwd(
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_gpt_fwd_bwd()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gpt(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_gpt(4)
|
||||
|
@@ -14,10 +14,10 @@ from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
# run gemini use the runtime memory tracer
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['auto'])
|
||||
@parameterize('keep_gather', [False])
|
||||
@parameterize('model_name', ['repeated_computed_layers', 'bert', 'albert', 'gpt2'])
|
||||
@parameterize('use_grad_checkpoint', [False, True])
|
||||
@parameterize("placement_policy", ["auto"])
|
||||
@parameterize("keep_gather", [False])
|
||||
@parameterize("model_name", ["repeated_computed_layers", "bert", "albert", "gpt2"])
|
||||
@parameterize("use_grad_checkpoint", [False, True])
|
||||
def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_checkpoint: bool = False):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
@@ -25,7 +25,7 @@ def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_
|
||||
|
||||
model = model_builder(use_grad_checkpoint).cuda()
|
||||
|
||||
print(f'model_name {model_name}')
|
||||
print(f"model_name {model_name}")
|
||||
runtime_mem_tracer = RuntimeMemTracer(model)
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
if i > 0:
|
||||
@@ -37,17 +37,17 @@ def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_
|
||||
run_fwd_bwd(runtime_mem_tracer, input_ids, label, criterion, runtime_mem_tracer)
|
||||
memstats = runtime_mem_tracer.memstats()
|
||||
runtime_tracer_non_model_data = runtime_mem_tracer._memstats._non_model_data_cuda_list
|
||||
print('runtime tracer non model data points: ', len(runtime_tracer_non_model_data))
|
||||
print('runtime tracer: ', runtime_tracer_non_model_data)
|
||||
print("runtime tracer non model data points: ", len(runtime_tracer_non_model_data))
|
||||
print("runtime tracer: ", runtime_tracer_non_model_data)
|
||||
print([memstats.param_used_step(p) for p in model.parameters()])
|
||||
|
||||
if model_name == 'repeated_computed_layers':
|
||||
if model_name == "repeated_computed_layers":
|
||||
for idx, p in enumerate(model.parameters()):
|
||||
step_list = memstats.param_used_step(p)
|
||||
if idx < 4:
|
||||
assert len(step_list) == 4
|
||||
|
||||
if model_name == 'repeated_computed_layers':
|
||||
if model_name == "repeated_computed_layers":
|
||||
for idx, p in enumerate(model.parameters()):
|
||||
step_list = memstats.param_used_step(p)
|
||||
if idx < 4:
|
||||
@@ -55,13 +55,11 @@ def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = keep_gather
|
||||
model = GeminiDDP(model,
|
||||
chunk_config_dict=config_dict,
|
||||
placement_policy=placement_policy,
|
||||
pin_memory=True,
|
||||
memstats=memstats)
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = keep_gather
|
||||
model = GeminiDDP(
|
||||
model, chunk_config_dict=config_dict, placement_policy=placement_policy, pin_memory=True, memstats=memstats
|
||||
)
|
||||
|
||||
set_seed(dist.get_rank())
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
@@ -73,29 +71,30 @@ def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
|
||||
set_seed(42)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, model)
|
||||
run_fwd_bwd(model, input_ids, label, criterion, model)
|
||||
|
||||
gemini_non_model_data = model.gemini_manager._mem_stats_collector._memstats.non_model_data_list('cuda')
|
||||
gemini_non_model_data = model.gemini_manager._mem_stats_collector._memstats.non_model_data_list("cuda")
|
||||
|
||||
# print('gemini non model data:', gemini_non_model_data)
|
||||
|
||||
assert len(gemini_non_model_data) == len(runtime_tracer_non_model_data), \
|
||||
f'model_name {model_name} {len(gemini_non_model_data)} vs {len(runtime_tracer_non_model_data)}'
|
||||
assert len(gemini_non_model_data) == len(
|
||||
runtime_tracer_non_model_data
|
||||
), f"model_name {model_name} {len(gemini_non_model_data)} vs {len(runtime_tracer_non_model_data)}"
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_gemini_use_rmt()
|
||||
|
||||
|
||||
@pytest.mark.skip("this is not used")
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gemini_use_rmt(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_gemini_use_rmt(1)
|
||||
|
@@ -16,26 +16,24 @@ from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.0,
|
||||
'offload_param_frac': 0.0
|
||||
}, # zero2
|
||||
"placement_policy": "static",
|
||||
"shard_param_frac": 0.0,
|
||||
"offload_optim_frac": 0.0,
|
||||
"offload_param_frac": 0.0,
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 1.0,
|
||||
'offload_param_frac': 0.0
|
||||
}, # zero2-offload
|
||||
"placement_policy": "static",
|
||||
"shard_param_frac": 0.0,
|
||||
"offload_optim_frac": 1.0,
|
||||
"offload_param_frac": 0.0,
|
||||
}, # zero2-offload
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.5,
|
||||
'offload_param_frac': 0.0
|
||||
}, # zero2-offload-half
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
"placement_policy": "static",
|
||||
"shard_param_frac": 0.0,
|
||||
"offload_optim_frac": 0.5,
|
||||
"offload_param_frac": 0.0,
|
||||
}, # zero2-offload-half
|
||||
{"placement_policy": "auto"},
|
||||
]
|
||||
|
||||
|
||||
@@ -52,15 +50,15 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('model_name', ['gpt2'])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", ["gpt2"])
|
||||
def exam_grad_clipping(placement_config, model_name: str):
|
||||
set_seed(1912)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=32)
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=32)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||
@@ -72,18 +70,16 @@ def exam_grad_clipping(placement_config, model_name: str):
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = False
|
||||
if placement_config['placement_policy'] != 'cuda':
|
||||
init_device = torch.device('cpu')
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = False
|
||||
if placement_config["placement_policy"] != "cuda":
|
||||
init_device = torch.device("cpu")
|
||||
else:
|
||||
init_device = None
|
||||
|
||||
model = GeminiDDP(model,
|
||||
chunk_config_dict=config_dict,
|
||||
chunk_init_device=init_device,
|
||||
pin_memory=True,
|
||||
**placement_config)
|
||||
model = GeminiDDP(
|
||||
model, chunk_config_dict=config_dict, chunk_init_device=init_device, pin_memory=True, **placement_config
|
||||
)
|
||||
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=32, clipping_norm=1.0)
|
||||
@@ -106,6 +102,7 @@ def exam_grad_clipping(placement_config, model_name: str):
|
||||
assert_close(torch_loss, loss)
|
||||
|
||||
import apex.amp as apex_amp
|
||||
|
||||
torch.nn.utils.clip_grad_norm_(apex_amp.master_params(torch_optim), 1.0)
|
||||
torch_optim.step()
|
||||
zero_optim.step()
|
||||
@@ -115,16 +112,16 @@ def exam_grad_clipping(placement_config, model_name: str):
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_grad_clipping()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 2])
|
||||
@pytest.mark.parametrize("world_size", [1, 2])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_grad_clip(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_grad_clip(2)
|
||||
|
@@ -18,21 +18,10 @@ from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 1.0
|
||||
}, # zero3
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.5
|
||||
}, # zero3-half
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
|
||||
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3
|
||||
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half
|
||||
{"placement_policy": "auto"},
|
||||
]
|
||||
|
||||
|
||||
@@ -52,8 +41,8 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
def multi_chunk_init(model: torch.nn.Module, placement_config: dict):
|
||||
world_size = dist.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = False
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = False
|
||||
model = GeminiDDP(model, config_dict, pin_memory=True, **placement_config)
|
||||
return model
|
||||
|
||||
@@ -63,16 +52,16 @@ def single_chunk_init(model: torch.nn.Module, placement_config: dict):
|
||||
return model
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('model_name', ['gpt2'])
|
||||
@parameterize('model_init_func', [single_chunk_init, multi_chunk_init])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", ["gpt2"])
|
||||
@parameterize("model_init_func", [single_chunk_init, multi_chunk_init])
|
||||
def exam_inference(placement_config: dict, model_name: str, model_init_func: Callable):
|
||||
set_seed(19360226)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128)
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=128)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||
@@ -121,16 +110,16 @@ def exam_inference(placement_config: dict, model_name: str, model_init_func: Cal
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_inference()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_inference(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_inference(1)
|
||||
|
@@ -16,50 +16,30 @@ from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0}, # zero2-offload
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half
|
||||
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3
|
||||
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.0
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 1.0
|
||||
}, # zero2-offload
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.5
|
||||
}, # zero2-offload-half
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 1.0
|
||||
}, # zero3
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.5
|
||||
}, # zero3-half
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 1.0,
|
||||
'offload_optim_frac': 1.0,
|
||||
'offload_param_frac': 1.0
|
||||
}, # zero3-offload-all
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
"placement_policy": "static",
|
||||
"shard_param_frac": 1.0,
|
||||
"offload_optim_frac": 1.0,
|
||||
"offload_param_frac": 1.0,
|
||||
}, # zero3-offload-all
|
||||
{"placement_policy": "auto"},
|
||||
]
|
||||
|
||||
# this model is large enough to slice to chunks
|
||||
TEST_MODELS = ['gpt2']
|
||||
TEST_MODELS = ["gpt2"]
|
||||
# these models are too small, all parameters in these models are compacted into one chunk
|
||||
EXAMPLE_MODELS = ['albert', 'beit', 'bert', 'hanging_param_model', 'nested_model', 'repeated_computed_layers']
|
||||
EXAMPLE_MODELS = ["albert", "beit", "bert", "hanging_param_model", "nested_model", "repeated_computed_layers"]
|
||||
|
||||
# bfloat16 cannot represent them exactly
|
||||
BF16_IGNORED_KEYS = [
|
||||
'albert.embeddings.word_embeddings.weight',
|
||||
'albert.embeddings.position_embeddings.weight',
|
||||
'masked_bias',
|
||||
"albert.embeddings.word_embeddings.weight",
|
||||
"albert.embeddings.position_embeddings.weight",
|
||||
"masked_bias",
|
||||
]
|
||||
|
||||
|
||||
@@ -78,23 +58,25 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dty
|
||||
if dtype is torch.bfloat16:
|
||||
rtol, atol = 4e-3, 8e-3
|
||||
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
|
||||
assert_close(value.float(),
|
||||
temp_zero_value.float(),
|
||||
rtol=rtol,
|
||||
atol=atol,
|
||||
msg=lambda s: s + f'\n{key}\n{temp_zero_value.dtype}')
|
||||
assert_close(
|
||||
value.float(),
|
||||
temp_zero_value.float(),
|
||||
rtol=rtol,
|
||||
atol=atol,
|
||||
msg=lambda s: s + f"\n{key}\n{temp_zero_value.dtype}",
|
||||
)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('model_name', TEST_MODELS)
|
||||
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", TEST_MODELS)
|
||||
@parameterize("mixed_precision", [torch.half, torch.bfloat16])
|
||||
def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128)
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=128)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||
@@ -106,8 +88,8 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = False
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = False
|
||||
model = GeminiDDP(model, config_dict, **placement_config, mixed_precision=mixed_precision)
|
||||
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
@@ -135,16 +117,16 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
|
||||
check_param(model, torch_model, mixed_precision)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('model_name', EXAMPLE_MODELS)
|
||||
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", EXAMPLE_MODELS)
|
||||
@parameterize("mixed_precision", [torch.half, torch.bfloat16])
|
||||
def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.dtype):
|
||||
set_seed(2008)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=2)
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=2)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||
@@ -154,12 +136,14 @@ def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
p.data.copy_(torch_p.data)
|
||||
|
||||
model = GeminiDDP(model,
|
||||
chunk_init_device=get_current_device(),
|
||||
search_range_m=1,
|
||||
pin_memory=True,
|
||||
mixed_precision=mixed_precision,
|
||||
**placement_config)
|
||||
model = GeminiDDP(
|
||||
model,
|
||||
chunk_init_device=get_current_device(),
|
||||
search_range_m=1,
|
||||
pin_memory=True,
|
||||
mixed_precision=mixed_precision,
|
||||
**placement_config,
|
||||
)
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=2)
|
||||
|
||||
@@ -182,7 +166,7 @@ def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.
|
||||
|
||||
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
||||
assert_close(torch_loss, loss, rtol=rtol, atol=atol) # atol should be 2e-5 for torch lower than 1.12
|
||||
assert_close(torch_loss, loss, rtol=rtol, atol=atol) # atol should be 2e-5 for torch lower than 1.12
|
||||
|
||||
zero_optim.step()
|
||||
torch_optim.step()
|
||||
@@ -192,17 +176,17 @@ def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_model_step()
|
||||
exam_tiny_example()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_optim(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_optim(1)
|
||||
|
@@ -13,7 +13,7 @@ from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
@pytest.mark.skip("this is not used")
|
||||
@clear_cache_before_run()
|
||||
def test_runtime_mem_tracer():
|
||||
test_models = ['gpt2', 'bert', 'simple_net', 'repeated_computed_layers', 'nested_model', 'albert']
|
||||
test_models = ["gpt2", "bert", "simple_net", "repeated_computed_layers", "nested_model", "albert"]
|
||||
|
||||
for model_name in test_models:
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
@@ -35,7 +35,7 @@ def test_runtime_mem_tracer():
|
||||
for p1, p2 in zip(model_bk.parameters(), model.parameters()):
|
||||
torch.allclose(p1.to(torch.half), p2)
|
||||
|
||||
non_model_data_list = runtime_mem_tracer._memstats.non_model_data_list('cuda')
|
||||
non_model_data_list = runtime_mem_tracer._memstats.non_model_data_list("cuda")
|
||||
cuda_non_model_data_list = np.array(non_model_data_list) / 1024**2
|
||||
print("cuda_non_model_data_list", len(cuda_non_model_data_list))
|
||||
print(non_model_data_list)
|
||||
@@ -46,9 +46,9 @@ def test_runtime_mem_tracer():
|
||||
cnt2 = 0
|
||||
for p in model.parameters():
|
||||
cnt2 += 1
|
||||
assert cnt2 == cnt1, f'visited param number {cnt1} vs real param number {cnt2}'
|
||||
assert cnt2 == cnt1, f"visited param number {cnt1} vs real param number {cnt2}"
|
||||
del model
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_runtime_mem_tracer()
|
||||
|
@@ -11,19 +11,17 @@ from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
def exam_search_chunk_size():
|
||||
world_size = torch.distributed.get_world_size()
|
||||
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
get_components_func = non_distributed_component_funcs.get_callable("gpt2")
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
# make sure torch_model and model has the same parameter values
|
||||
model = model_builder()
|
||||
config_dict, *_ = search_chunk_configuration(model,
|
||||
search_range_m=1,
|
||||
search_interval=16,
|
||||
min_chunk_size_m=0,
|
||||
filter_exlarge_params=True)
|
||||
config_dict, *_ = search_chunk_configuration(
|
||||
model, search_range_m=1, search_interval=16, min_chunk_size_m=0, filter_exlarge_params=True
|
||||
)
|
||||
|
||||
for key in config_dict:
|
||||
chunk_size = config_dict[key]['chunk_size']
|
||||
chunk_size = config_dict[key]["chunk_size"]
|
||||
if world_size == 1 or True:
|
||||
assert chunk_size == 31616
|
||||
else:
|
||||
@@ -33,34 +31,36 @@ def exam_search_chunk_size():
|
||||
def exam_chunk_manager():
|
||||
world_size = torch.distributed.get_world_size()
|
||||
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
get_components_func = non_distributed_component_funcs.get_callable("gpt2")
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
sharded_ddp_model = model_builder()
|
||||
chunk_manager = init_chunk_manager(sharded_ddp_model,
|
||||
get_current_device(),
|
||||
hidden_dim=16,
|
||||
search_range_m=1,
|
||||
min_chunk_size_m=0,
|
||||
filter_exlarge_params=True,
|
||||
strict_ddp_flag=True)
|
||||
chunk_manager = init_chunk_manager(
|
||||
sharded_ddp_model,
|
||||
get_current_device(),
|
||||
hidden_dim=16,
|
||||
search_range_m=1,
|
||||
min_chunk_size_m=0,
|
||||
filter_exlarge_params=True,
|
||||
strict_ddp_flag=True,
|
||||
)
|
||||
config_dict = chunk_manager.dp_degree_chunk_size_dict
|
||||
assert len(config_dict) == 1
|
||||
assert config_dict[world_size] == 31616
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_search_chunk_size()
|
||||
exam_chunk_manager()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_search(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_search(4)
|
||||
|
@@ -10,21 +10,10 @@ from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 1.0
|
||||
}, # zero3
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.5
|
||||
}, # zero3-half
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
|
||||
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3
|
||||
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half
|
||||
{"placement_policy": "auto"},
|
||||
]
|
||||
|
||||
|
||||
@@ -35,9 +24,9 @@ def ignore_the_first_parameter(model: torch.nn.Module):
|
||||
return
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('keep_gathered', [True, False])
|
||||
@parameterize('model_name', ['gpt2', 'bert'])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("keep_gathered", [True, False])
|
||||
@parameterize("model_name", ["gpt2", "bert"])
|
||||
def exam_state_dict(placement_config, keep_gathered, model_name: str):
|
||||
set_seed(431)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
@@ -51,8 +40,8 @@ def exam_state_dict(placement_config, keep_gathered, model_name: str):
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = keep_gathered
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = keep_gathered
|
||||
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True)
|
||||
model.train()
|
||||
|
||||
@@ -65,9 +54,9 @@ def exam_state_dict(placement_config, keep_gathered, model_name: str):
|
||||
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('keep_gathered', [True, False])
|
||||
@parameterize('model_name', ['gpt2', 'bert'])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("keep_gathered", [True, False])
|
||||
@parameterize("model_name", ["gpt2", "bert"])
|
||||
def exam_load_state_dict(placement_config, keep_gathered, model_name: str):
|
||||
set_seed(431)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
@@ -76,12 +65,12 @@ def exam_load_state_dict(placement_config, keep_gathered, model_name: str):
|
||||
model = model_builder()
|
||||
|
||||
set_seed(451)
|
||||
torch_model = model_builder() # get a different model
|
||||
torch_model = model_builder() # get a different model
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = keep_gathered
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = keep_gathered
|
||||
|
||||
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True)
|
||||
|
||||
@@ -95,8 +84,8 @@ def exam_load_state_dict(placement_config, keep_gathered, model_name: str):
|
||||
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('model_name', ['gpt2', 'bert'])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", ["gpt2", "bert"])
|
||||
def exam_state_dict_shard(placement_config, model_name: str):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
@@ -122,18 +111,18 @@ def exam_state_dict_shard(placement_config, model_name: str):
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_state_dict()
|
||||
exam_load_state_dict()
|
||||
exam_state_dict_shard()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_zero_ddp(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_zero_ddp(1)
|
||||
|
@@ -11,32 +11,18 @@ from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.0
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 1.0
|
||||
}, # zero2-offload
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.5
|
||||
}, # zero2-offload-half
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0}, # zero2-offload
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half
|
||||
{"placement_policy": "auto"},
|
||||
]
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('keep_gathered', [True, False])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("keep_gathered", [True, False])
|
||||
def exam_zero_optim_state_dict(placement_config, keep_gathered):
|
||||
set_seed(431)
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
get_components_func = non_distributed_component_funcs.get_callable("gpt2")
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
model = model_builder()
|
||||
@@ -45,13 +31,13 @@ def exam_zero_optim_state_dict(placement_config, keep_gathered):
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = keep_gathered
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = keep_gathered
|
||||
|
||||
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True)
|
||||
|
||||
optimizer = HybridAdam(model.parameters())
|
||||
optim = GeminiOptimizer(optimizer, model, initial_scale=32) # initialize the link between chunk16 and chunk32
|
||||
optim = GeminiOptimizer(optimizer, model, initial_scale=32) # initialize the link between chunk16 and chunk32
|
||||
|
||||
set_seed(dist.get_rank() * 3 + 128)
|
||||
model.train()
|
||||
@@ -67,8 +53,8 @@ def exam_zero_optim_state_dict(placement_config, keep_gathered):
|
||||
|
||||
optim_state_dict = optim.state_dict()
|
||||
optim.load_state_dict(optim_state_dict)
|
||||
new_state = optim.state_dict()['state']
|
||||
org_state = optim_state_dict['state']
|
||||
new_state = optim.state_dict()["state"]
|
||||
org_state = optim_state_dict["state"]
|
||||
|
||||
for k, v in org_state.items():
|
||||
w = new_state[k]
|
||||
@@ -82,16 +68,16 @@ def exam_zero_optim_state_dict(placement_config, keep_gathered):
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_zero_optim_state_dict()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_zero_optim(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_zero_optim(1)
|
||||
|
Reference in New Issue
Block a user