mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 04:50:17 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -16,26 +16,24 @@ from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.0,
|
||||
'offload_param_frac': 0.0
|
||||
}, # zero2
|
||||
"placement_policy": "static",
|
||||
"shard_param_frac": 0.0,
|
||||
"offload_optim_frac": 0.0,
|
||||
"offload_param_frac": 0.0,
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 1.0,
|
||||
'offload_param_frac': 0.0
|
||||
}, # zero2-offload
|
||||
"placement_policy": "static",
|
||||
"shard_param_frac": 0.0,
|
||||
"offload_optim_frac": 1.0,
|
||||
"offload_param_frac": 0.0,
|
||||
}, # zero2-offload
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.5,
|
||||
'offload_param_frac': 0.0
|
||||
}, # zero2-offload-half
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
"placement_policy": "static",
|
||||
"shard_param_frac": 0.0,
|
||||
"offload_optim_frac": 0.5,
|
||||
"offload_param_frac": 0.0,
|
||||
}, # zero2-offload-half
|
||||
{"placement_policy": "auto"},
|
||||
]
|
||||
|
||||
|
||||
@@ -52,15 +50,15 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('model_name', ['gpt2'])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", ["gpt2"])
|
||||
def exam_grad_clipping(placement_config, model_name: str):
|
||||
set_seed(1912)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=32)
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=32)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||
@@ -72,18 +70,16 @@ def exam_grad_clipping(placement_config, model_name: str):
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = False
|
||||
if placement_config['placement_policy'] != 'cuda':
|
||||
init_device = torch.device('cpu')
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = False
|
||||
if placement_config["placement_policy"] != "cuda":
|
||||
init_device = torch.device("cpu")
|
||||
else:
|
||||
init_device = None
|
||||
|
||||
model = GeminiDDP(model,
|
||||
chunk_config_dict=config_dict,
|
||||
chunk_init_device=init_device,
|
||||
pin_memory=True,
|
||||
**placement_config)
|
||||
model = GeminiDDP(
|
||||
model, chunk_config_dict=config_dict, chunk_init_device=init_device, pin_memory=True, **placement_config
|
||||
)
|
||||
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=32, clipping_norm=1.0)
|
||||
@@ -106,6 +102,7 @@ def exam_grad_clipping(placement_config, model_name: str):
|
||||
assert_close(torch_loss, loss)
|
||||
|
||||
import apex.amp as apex_amp
|
||||
|
||||
torch.nn.utils.clip_grad_norm_(apex_amp.master_params(torch_optim), 1.0)
|
||||
torch_optim.step()
|
||||
zero_optim.step()
|
||||
@@ -115,16 +112,16 @@ def exam_grad_clipping(placement_config, model_name: str):
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_grad_clipping()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 2])
|
||||
@pytest.mark.parametrize("world_size", [1, 2])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_grad_clip(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_grad_clip(2)
|
||||
|
Reference in New Issue
Block a user