mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 01:55:12 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -16,50 +16,30 @@ from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0}, # zero2-offload
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half
|
||||
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3
|
||||
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.0
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 1.0
|
||||
}, # zero2-offload
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0,
|
||||
'offload_optim_frac': 0.5
|
||||
}, # zero2-offload-half
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 1.0
|
||||
}, # zero3
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.5
|
||||
}, # zero3-half
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 1.0,
|
||||
'offload_optim_frac': 1.0,
|
||||
'offload_param_frac': 1.0
|
||||
}, # zero3-offload-all
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
"placement_policy": "static",
|
||||
"shard_param_frac": 1.0,
|
||||
"offload_optim_frac": 1.0,
|
||||
"offload_param_frac": 1.0,
|
||||
}, # zero3-offload-all
|
||||
{"placement_policy": "auto"},
|
||||
]
|
||||
|
||||
# this model is large enough to slice to chunks
|
||||
TEST_MODELS = ['gpt2']
|
||||
TEST_MODELS = ["gpt2"]
|
||||
# these models are too small, all parameters in these models are compacted into one chunk
|
||||
EXAMPLE_MODELS = ['albert', 'beit', 'bert', 'hanging_param_model', 'nested_model', 'repeated_computed_layers']
|
||||
EXAMPLE_MODELS = ["albert", "beit", "bert", "hanging_param_model", "nested_model", "repeated_computed_layers"]
|
||||
|
||||
# bfloat16 cannot represent them exactly
|
||||
BF16_IGNORED_KEYS = [
|
||||
'albert.embeddings.word_embeddings.weight',
|
||||
'albert.embeddings.position_embeddings.weight',
|
||||
'masked_bias',
|
||||
"albert.embeddings.word_embeddings.weight",
|
||||
"albert.embeddings.position_embeddings.weight",
|
||||
"masked_bias",
|
||||
]
|
||||
|
||||
|
||||
@@ -78,23 +58,25 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dty
|
||||
if dtype is torch.bfloat16:
|
||||
rtol, atol = 4e-3, 8e-3
|
||||
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
|
||||
assert_close(value.float(),
|
||||
temp_zero_value.float(),
|
||||
rtol=rtol,
|
||||
atol=atol,
|
||||
msg=lambda s: s + f'\n{key}\n{temp_zero_value.dtype}')
|
||||
assert_close(
|
||||
value.float(),
|
||||
temp_zero_value.float(),
|
||||
rtol=rtol,
|
||||
atol=atol,
|
||||
msg=lambda s: s + f"\n{key}\n{temp_zero_value.dtype}",
|
||||
)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('model_name', TEST_MODELS)
|
||||
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", TEST_MODELS)
|
||||
@parameterize("mixed_precision", [torch.half, torch.bfloat16])
|
||||
def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128)
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=128)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||
@@ -106,8 +88,8 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = False
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = False
|
||||
model = GeminiDDP(model, config_dict, **placement_config, mixed_precision=mixed_precision)
|
||||
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
@@ -135,16 +117,16 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
|
||||
check_param(model, torch_model, mixed_precision)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('model_name', EXAMPLE_MODELS)
|
||||
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", EXAMPLE_MODELS)
|
||||
@parameterize("mixed_precision", [torch.half, torch.bfloat16])
|
||||
def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.dtype):
|
||||
set_seed(2008)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=2)
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=2)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||
@@ -154,12 +136,14 @@ def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
p.data.copy_(torch_p.data)
|
||||
|
||||
model = GeminiDDP(model,
|
||||
chunk_init_device=get_current_device(),
|
||||
search_range_m=1,
|
||||
pin_memory=True,
|
||||
mixed_precision=mixed_precision,
|
||||
**placement_config)
|
||||
model = GeminiDDP(
|
||||
model,
|
||||
chunk_init_device=get_current_device(),
|
||||
search_range_m=1,
|
||||
pin_memory=True,
|
||||
mixed_precision=mixed_precision,
|
||||
**placement_config,
|
||||
)
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=2)
|
||||
|
||||
@@ -182,7 +166,7 @@ def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.
|
||||
|
||||
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
||||
assert_close(torch_loss, loss, rtol=rtol, atol=atol) # atol should be 2e-5 for torch lower than 1.12
|
||||
assert_close(torch_loss, loss, rtol=rtol, atol=atol) # atol should be 2e-5 for torch lower than 1.12
|
||||
|
||||
zero_optim.step()
|
||||
torch_optim.step()
|
||||
@@ -192,17 +176,17 @@ def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_model_step()
|
||||
exam_tiny_example()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@pytest.mark.parametrize("world_size", [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_optim(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_optim(1)
|
||||
|
Reference in New Issue
Block a user