mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-27 03:26:41 +00:00
merge
This commit is contained in:
@@ -9,7 +9,7 @@ from coati.distributed.launch import launch_distributed
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-m", "--model", type=str, default="Qwen/Qwen2.5-7B")
|
||||
parser.add_argument("-d", "--dataset", type=str, default="data_train.jsonl")
|
||||
parser.add_argument("-d", "--dataset", type=str, default="data.jsonl")
|
||||
parser.add_argument(
|
||||
"-ed",
|
||||
"--eval-dataset",
|
||||
@@ -30,7 +30,7 @@ if __name__ == "__main__":
|
||||
"-ibs",
|
||||
"--inference-batch-size",
|
||||
type=int,
|
||||
default=None,
|
||||
default=64,
|
||||
help="Number of prompts to generate per inference step. It should be divisible by tbs, and the weights on the inference backend will be synced every ibs/tbs training steps of the policy model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -51,7 +51,7 @@ if __name__ == "__main__":
|
||||
"-tMbs",
|
||||
"--train-minibatch-size",
|
||||
type=int,
|
||||
default=None,
|
||||
default=8,
|
||||
help="Number of unique prompts in each training batch per dp group. The inference backend must generate tMbs * g * dp_size samples before forwarding. Satisfy tMbs * g >= tmbs",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -68,7 +68,7 @@ if __name__ == "__main__":
|
||||
"--master_address", type=str, default=None, help="Master address for multi-node distributed training, Optional"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--master_port", type=int, default=29505, help="Master port for multi-node distributed training, Optional"
|
||||
"--master_port", type=int, default=29506, help="Master port for multi-node distributed training, Optional"
|
||||
)
|
||||
|
||||
# Sampling parameters
|
||||
@@ -238,7 +238,7 @@ if __name__ == "__main__":
|
||||
"zero_stage": 2,
|
||||
}, # for zero
|
||||
# plugin_config={
|
||||
# "tp_size": 1,
|
||||
# "tp_size": 2,
|
||||
# "pp_size": 2,
|
||||
# "microbatch_size": max(
|
||||
# 1, args.train_microbatch_size // 2
|
||||
|
||||
Reference in New Issue
Block a user