[PP Middleware] Add bwd and step for PP middleware (#2111)

* add bwd and step for PP middleware

* pre-commit

Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
This commit is contained in:
Ziyue Jiang
2022-12-12 12:40:03 +08:00
committed by GitHub
parent 8afc001f4f
commit 09d69e1c25
5 changed files with 225 additions and 82 deletions

View File

@@ -31,7 +31,7 @@ class MLP(nn.Module):
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
return x.sum()
class DAG_MLP(nn.Module):
def __init__(self, dim: int, layers: int):
@@ -46,7 +46,7 @@ class DAG_MLP(nn.Module):
for layer in self.layers:
x = layer(x)
y = self.dag_layer(y)
return x, y
return x.sum(), y.sum()
class RpcTestModel(nn.Module):

View File

@@ -41,10 +41,10 @@ def partition(model, data_kwargs: dict, pp_rank: int, chunk: int, stage_num: int
partition = create_partition_module(pp_rank, stage_num, model, data_kwargs)
return partition
def run_master(model_cls, world_size):
def run_master(model_cls, world_size, forward_only):
torch.manual_seed(100)
epoch = 10
epoch = 3
device = 'cuda'
stage_num = world_size
chunk = 1
@@ -57,6 +57,10 @@ def run_master(model_cls, world_size):
kwargs = dict(x=x)
return kwargs
model = model_cls(dim, stage_num * 3)
if forward_only:
labels = None
else:
labels = 1
elif model_cls == DAG_MLP:
def data_gen():
x = torch.zeros((batch_size, dim))
@@ -64,24 +68,30 @@ def run_master(model_cls, world_size):
kwargs = dict(x=x, y=y)
return kwargs
model = model_cls(dim, stage_num * 3)
if forward_only:
labels = None
else:
labels = 1
else:
pass
data_kwargs = data_gen()
engine = OneFOneBPipelineEngine(partition_fn=partial(partition, model, data_kwargs),
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
checkpoint=use_checkpoint,)
if not forward_only:
engine.initialize_optimizer(getattr(torch.optim, 'SGD'), lr=1e-3)
for _ in range(epoch):
input_x = torch.randn((batch_size, dim), device=device)
input_y = torch.randn((batch_size, dim), device=device)
logits = engine.forward_backward({'x': input_x, 'y': input_y}, forward_only=True)
logits = engine.forward_backward({'x': input_x, 'y': input_y}, labels=labels, forward_only=forward_only)
def run_worker(rank, model_cls, world_size, master_func):
def run_worker(rank, model_cls, world_size, forward_only, master_func):
master_addr = 'localhost'
master_port = 29020
os.environ['MASTER_ADDR'] = master_addr
@@ -99,19 +109,20 @@ def run_worker(rank, model_cls, world_size, master_func):
# in rpc mode, only rank 0 is needed to be coded
if rank == 0:
master_func(model_cls, world_size)
master_func(model_cls, world_size, forward_only)
# barrier here
if rpc_is_initialized():
rpc.shutdown()
@pytest.mark.skip("skip due to CI torch version 1.11")
@parameterize('model_cls', [MLP, DAG_MLP])
@parameterize('forward_only', [True, False])
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_pp_middleware_fwd(model_cls):
def test_pp_middleware_fwd(model_cls, forward_only):
world_size = 4
master_func = run_master
mp.spawn(run_worker, args=(model_cls, world_size, master_func), nprocs=world_size)
mp.spawn(run_worker, args=(model_cls, world_size, forward_only, master_func), nprocs=world_size)
if __name__ == "__main__":
test_pp_middleware_fwd()
test_pp_middleware_fwd()