[Inference]Move benchmark-related code to the example directory. (#5408)

* move benchmark-related code to the example directory.

* fix bugs in test_fused_rotary_embedding.py
This commit is contained in:
yuehuayingxueluo 2024-02-28 16:46:03 +08:00 committed by GitHub
parent 600881a8ea
commit 0aa27f1961
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 481 additions and 435 deletions

View File

@ -0,0 +1,113 @@
import torch
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from colossalai.inference.modeling.layers.attention import PagedAttention
from colossalai.kernel.triton import context_attention_unpadded
from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, torch_attn_ref
try:
import triton # noqa
except ImportError:
print("please install triton from https://github.com/openai/triton")
HEAD_DIM = 32
BATCH = 16
BLOCK_SIZE = 32
SAME_LEN = True
WARM_UPS = 10
REPS = 100
configs = [
triton.testing.Benchmark(
x_names=["KV_LEN"],
x_vals=[2**i for i in range(8, 13)],
# x_vals=[x for x in range(256, 8192, 256)],
line_arg="provider",
line_vals=["torch", "triton"],
line_names=["Torch", "Triton"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"context_attn-block_size-{BLOCK_SIZE}-batch{BATCH}",
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
)
]
@triton.testing.perf_report(configs)
def bench_kernel(
bsz,
KV_LEN,
provider,
block_size: int,
kv_group_num: int,
same_context_len: bool,
):
num_attn_heads = 16
max_num_blocks_per_seq = triton.cdiv(KV_LEN, block_size)
max_seq_len = block_size * max_num_blocks_per_seq
num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
dtype = torch.float16
device = get_current_device()
if same_context_len:
context_lengths = torch.tensor([max_seq_len for _ in range(bsz)], dtype=torch.int32, device=device)
else:
context_lengths = torch.randint(low=1, high=max_seq_len, size=(bsz,), dtype=torch.int32, device=device)
num_tokens = torch.sum(context_lengths).item()
qkv_size = (num_tokens, num_attn_heads + 2 * num_kv_heads, HEAD_DIM)
qkv_unpad = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2)
q_unpad = q_unpad.contiguous()
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
q_padded = PagedAttention.pad_and_reshape(q_unpad, context_lengths, max_seq_len, num_attn_heads, HEAD_DIM)
k_padded = PagedAttention.pad_and_reshape(k_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM)
v_padded = PagedAttention.pad_and_reshape(v_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM)
q_padded, k_padded, v_padded = (
q_padded.to(device=device),
k_padded.to(device=device),
v_padded.to(device=device),
)
q_padded = q_padded.transpose(1, 2)
k_padded = PagedAttention.repeat_kv(k_padded.transpose(1, 2), kv_group_num)
v_padded = PagedAttention.repeat_kv(v_padded.transpose(1, 2), kv_group_num)
# This benchmark ignores the padding mask. *Only* use the-same-length inputs for benchmarkings
attn_mask = AttentionMaskConverter._make_causal_mask(
(bsz, max_seq_len), q_padded.dtype, q_padded.device, past_key_values_length=0
)
attn_mask = attn_mask.to(device=q_padded.device)
fn = lambda: torch_attn_ref(
q_padded,
k_padded,
v_padded,
attn_mask,
bsz,
max_seq_len,
max_seq_len,
num_attn_heads,
num_kv_heads,
HEAD_DIM,
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":
k_cache_triton = torch.zeros_like(k_cache_ref)
v_cache_triton = torch.zeros_like(v_cache_ref)
fn = lambda: context_attention_unpadded(
q_unpad, k_unpad, v_unpad, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
return ms, min_ms, max_ms
if __name__ == "__main__":
bench_kernel.run(save_path=".", print_data=True)

View File

@ -0,0 +1,110 @@
import torch
from colossalai.kernel.triton import flash_decoding_attention
from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import (
convert_kv_unpad_to_padded,
generate_caches_and_block_tables_v2,
prepare_padding_mask,
torch_attn_ref,
)
from tests.test_infer.test_ops.triton.test_decoding_attn import prepare_data
try:
import triton # noqa
except ImportError:
print("please install triton from https://github.com/openai/triton")
Q_LEN = 1
HEAD_DIM = 128
BATCH = 16
BLOCK_SIZE = 32
SAME_LEN = True
WARM_UPS = 10
REPS = 100
configs = [
triton.testing.Benchmark(
x_names=["KV_LEN"],
x_vals=[2**i for i in range(8, 14)],
# x_vals=[x for x in range(256, 8192, 256)],
line_arg="provider",
line_vals=["torch", "triton"],
line_names=["Torch", "Triton"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"decoding-block_size-{BLOCK_SIZE}-batch{BATCH}",
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
)
]
@triton.testing.perf_report(configs)
def bench_kernel(
bsz,
KV_LEN,
provider,
block_size: int,
kv_group_num: int,
same_context_len: bool,
):
num_attn_heads = 16
max_num_blocks_per_seq = triton.cdiv(KV_LEN, block_size)
max_seq_len = block_size * max_num_blocks_per_seq
num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
block_size * max_num_blocks_per_seq
dtype = torch.float16
device = get_current_device()
q, k_unpad, v_unpad, kv_lengths = prepare_data(
bsz, num_attn_heads, num_kv_heads, HEAD_DIM, same_context_len, Q_LEN, max_seq_len, dtype, device
)
max_seq_len_in_b = kv_lengths.max().item() # for random lengths
quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_lengths, bsz, max_seq_len_in_b)
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_lengths, bsz, max_seq_len_in_b)
torch_padding_mask = prepare_padding_mask(kv_lengths, bsz, max_seq_len_in_b, q.device)
fn = lambda: torch_attn_ref(
q, k_torch, v_torch, torch_padding_mask, bsz, 1, max_seq_len_in_b, num_attn_heads, num_kv_heads, HEAD_DIM
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
# the maximum block length splitted on kv should be the kv cache block size
kv_max_split_num = (max_seq_len_in_b + block_size - 1) // block_size
output = torch.empty((bsz, num_attn_heads, HEAD_DIM), dtype=dtype, device=device)
mid_output = torch.empty(
size=(bsz, num_attn_heads, kv_max_split_num, HEAD_DIM), dtype=torch.float32, device=q.device
)
mid_output_lse = torch.empty(size=(bsz, num_attn_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
sm_scale = 1.0 / (HEAD_DIM**0.5)
fn = lambda: flash_decoding_attention(
# Here we use q.squeeze(2) because we hide the q_len dimension (which is equivalent to 1),
# refer to attention forward in modeling.
q.squeeze(2),
k_cache,
v_cache,
kv_lengths,
block_tables,
block_size,
max_seq_len_in_b,
output,
mid_output,
mid_output_lse,
sm_scale=sm_scale,
kv_group_num=kv_group_num,
) # [bsz, 1, num_heads, head_dim]
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
return ms, min_ms, max_ms
if __name__ == "__main__":
bench_kernel.run(save_path=".", print_data=True)

View File

@ -0,0 +1,65 @@
import torch
import triton
from colossalai.kernel.triton.fused_rotary_embedding import fused_rotary_embedding
BATCH = 16
configs = [
triton.testing.Benchmark(
x_names=["num_tokens"],
x_vals=[2**i for i in range(4, 12)],
line_arg="provider",
line_vals=["torch_rotary_emb_func", "triton_rotary_emb_func"],
line_names=["torch_rotary_emb_func", "triton_rotary_emb_func"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"rotary_emb-batch-{BATCH}",
args={"num_kv_heads": 16},
)
]
def torch_rotary_emb(x, cos, sin):
seq_len, h, dim = x.shape
x0 = x[:, :, 0 : dim // 2]
x1 = x[:, :, dim // 2 : dim]
cos = cos.view((seq_len, 1, dim // 2))
sin = sin.view((seq_len, 1, dim // 2))
o0 = x0 * cos - x1 * sin
o1 = x0 * sin + x1 * cos
return torch.cat((o0, o1), dim=-1)
@triton.testing.perf_report(configs)
def benchmark_rotary_emb(
provider: str,
num_tokens: int,
num_kv_heads: int,
):
warmup = 10
rep = 100
head_dim = 128
dtype = torch.float16
q_shape = (num_tokens, num_kv_heads, head_dim)
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
k_shape = (num_tokens, num_kv_heads, head_dim)
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
cos_shape = (4096, head_dim // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
lengths = torch.tensor([3, 4, 6, 7], device="cuda")
if provider == "torch_rotary_emb_func":
fn = lambda: torch_rotary_emb(q, cos[:num_tokens], sin[:num_tokens])
elif provider == "triton_rotary_emb_func":
fn = lambda: fused_rotary_embedding(q, k, cos, sin, lengths)
else:
raise ValueError("Undefined provider")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__":
benchmark_rotary_emb.run(save_path=".", print_data=True)

View File

@ -0,0 +1,78 @@
import torch
import triton
from colossalai.kernel.triton import rms_layernorm
try:
import triton # noqa
except ImportError:
print("please install triton from https://github.com/openai/triton")
# Triton benchmark plot attributions
configs = [
triton.testing.Benchmark(
x_names=["SEQUENCE_TOTAL"],
x_vals=[i for i in range(128, 1025, 128)],
line_arg="provider",
line_vals=[
"vllm_rms_layernorm",
"triton_rms_layernorm",
"triton_rms_layernorm_with_residual",
"vllm_rms_layernorm_with_residual",
],
line_names=[
"vllm_rms_layernorm",
"triton_rms_layernorm",
"triton_rms_layernorm_with_residual",
"vllm_rms_layernorm_with_residual",
],
styles=[("red", "-"), ("blue", "-"), ("yellow", "-"), ("green", "-")],
ylabel="ms",
plot_name=f"RMSNorm benchmarking results",
args={"HIDDEN_SIZE": 1024},
)
]
@triton.testing.perf_report(configs)
def benchmark_rms_layernorm(
provider: str,
SEQUENCE_TOTAL: int,
HIDDEN_SIZE: int,
):
try:
from vllm.model_executor.layers.layernorm import RMSNorm
except ImportError:
raise ImportError("Please install vllm from https://github.com/vllm-project/vllm")
warmup = 10
rep = 1000
dtype = torch.float16
eps = 1e-5
x_shape = (SEQUENCE_TOTAL, HIDDEN_SIZE)
w_shape = (x_shape[-1],)
residual = torch.rand(x_shape, dtype=dtype, device="cuda")
weight = torch.ones(w_shape, dtype=dtype, device="cuda")
vllm_norm = RMSNorm(hidden_size=HIDDEN_SIZE, eps=eps).to(dtype=dtype, device="cuda")
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
if provider == "vllm_rms_layernorm":
fn = lambda: vllm_norm(x)
elif provider == "triton_rms_layernorm":
fn = lambda: rms_layernorm(x, weight, eps=eps)
elif provider == "vllm_rms_layernorm_with_residual":
fn = lambda: vllm_norm(x, residual=residual)
elif provider == "triton_rms_layernorm_with_residual":
fn = lambda: rms_layernorm(x, weight, eps=eps, residual=residual)
else:
raise ValueError("Undefined provider.")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__":
benchmark_rms_layernorm.run(save_path=".", print_data=True)

View File

@ -0,0 +1,90 @@
import torch
from colossalai.kernel.triton import copy_kv_to_blocked_cache, decoding_fused_rotary_embedding, rotary_embedding
from tests.test_infer.test_ops.triton.kernel_utils import mock_alloc_block_table_and_kvcache_v2, mock_alloc_single_token
try:
import triton # noqa
except ImportError:
print("please install triton from https://github.com/openai/triton")
BATCH = 16
configs = [
triton.testing.Benchmark(
x_names=["num_tokens"],
x_vals=[2**i for i in range(4, 11)],
line_arg="provider",
line_vals=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
line_names=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"rotary_emb-batch-{BATCH}",
args={"num_kv_heads": 16},
)
]
@triton.testing.perf_report(configs)
def benchmark_rotary_emb(
provider: str,
num_tokens: int,
num_kv_heads: int,
):
BATCH_SIZE = 4
SEQ_LEN = num_tokens // BATCH_SIZE
max_num_blocks_per_seq = 8
block_size = 64
warmup = 10
rep = 100
head_dim = 4096
dtype = torch.float16
q_shape = (num_tokens, num_kv_heads, head_dim)
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
k_shape = (num_tokens, num_kv_heads, head_dim)
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
v = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
cos_shape = (num_tokens, head_dim // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
v_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
past_kv_seq_lengths = torch.tensor([SEQ_LEN - 1 for _ in range(BATCH_SIZE)], dtype=torch.int32, device="cuda")
block_tables = mock_alloc_block_table_and_kvcache_v2(
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
)
new_k = torch.randn((BATCH_SIZE, num_kv_heads, head_dim), dtype=dtype, device="cuda")
new_q = torch.randn_like(new_k)
new_v = torch.randn_like(new_k)
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
kv_seq_lengths = past_kv_seq_lengths + 1
block_tables = block_tables.to(device="cuda")
if provider == "no_fused_rotary_emb_func":
fn = lambda: [
rotary_embedding(new_q, new_k, cos, sin),
copy_kv_to_blocked_cache(
new_k, new_v, k_cache, v_cache, kv_lengths=kv_seq_lengths, block_tables=block_tables
),
]
elif provider == "fused_triton_rotary_emb_func":
fn = lambda: decoding_fused_rotary_embedding(
new_q, new_k, new_k, cos, sin, k_cache, k_cache, block_tables, kv_seq_lengths
)
else:
raise ValueError("Undefined provider")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__":
benchmark_rotary_emb.run(save_path=".", print_data=True)

View File

@ -1,9 +1,7 @@
import pytest import pytest
import torch import torch
from packaging import version from packaging import version
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from colossalai.inference.modeling.layers.attention import PagedAttention
from colossalai.kernel.triton import context_attention_unpadded from colossalai.kernel.triton import context_attention_unpadded
from colossalai.utils import get_current_device from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, torch_attn_ref from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, torch_attn_ref
@ -92,7 +90,6 @@ def test_context_attention(
qkv_unpad = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5) qkv_unpad = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2) q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2)
q_unpad = q_unpad.contiguous() q_unpad = q_unpad.contiguous()
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2( k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
) )
@ -116,102 +113,5 @@ def test_context_attention(
assert torch.equal(v_cache_ref, v_cache_triton) assert torch.equal(v_cache_ref, v_cache_triton)
BATCH = 16
BLOCK_SIZE = 32
SAME_LEN = True
WARM_UPS = 10
REPS = 100
configs = [
triton.testing.Benchmark(
x_names=["KV_LEN"],
x_vals=[2**i for i in range(8, 13)],
# x_vals=[x for x in range(256, 8192, 256)],
line_arg="provider",
line_vals=["torch", "triton"],
line_names=["Torch", "Triton"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"context_attn-block_size-{BLOCK_SIZE}-batch{BATCH}",
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
)
]
@triton.testing.perf_report(configs)
def bench_kernel(
bsz,
KV_LEN,
provider,
block_size: int,
kv_group_num: int,
same_context_len: bool,
):
num_attn_heads = 16
max_num_blocks_per_seq = triton.cdiv(KV_LEN, block_size)
max_seq_len = block_size * max_num_blocks_per_seq
num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
dtype = torch.float16
device = get_current_device()
if same_context_len:
context_lengths = torch.tensor([max_seq_len for _ in range(bsz)], dtype=torch.int32, device=device)
else:
context_lengths = torch.randint(low=1, high=max_seq_len, size=(bsz,), dtype=torch.int32, device=device)
num_tokens = torch.sum(context_lengths).item()
qkv_size = (num_tokens, num_attn_heads + 2 * num_kv_heads, HEAD_DIM)
qkv_unpad = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2)
q_unpad = q_unpad.contiguous()
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
q_padded = PagedAttention.pad_and_reshape(q_unpad, context_lengths, max_seq_len, num_attn_heads, HEAD_DIM)
k_padded = PagedAttention.pad_and_reshape(k_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM)
v_padded = PagedAttention.pad_and_reshape(v_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM)
q_padded, k_padded, v_padded = (
q_padded.to(device=device),
k_padded.to(device=device),
v_padded.to(device=device),
)
q_padded = q_padded.transpose(1, 2)
k_padded = PagedAttention.repeat_kv(k_padded.transpose(1, 2), kv_group_num)
v_padded = PagedAttention.repeat_kv(v_padded.transpose(1, 2), kv_group_num)
# This benchmark ignores the padding mask. *Only* use the-same-length inputs for benchmarkings
attn_mask = AttentionMaskConverter._make_causal_mask(
(bsz, max_seq_len), q_padded.dtype, q_padded.device, past_key_values_length=0
)
attn_mask = attn_mask.to(device=q_padded.device)
fn = lambda: torch_attn_ref(
q_padded,
k_padded,
v_padded,
attn_mask,
bsz,
max_seq_len,
max_seq_len,
num_attn_heads,
num_kv_heads,
HEAD_DIM,
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":
k_cache_triton = torch.zeros_like(k_cache_ref)
v_cache_triton = torch.zeros_like(v_cache_ref)
fn = lambda: context_attention_unpadded(
q_unpad, k_unpad, v_unpad, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
return ms, min_ms, max_ms
if __name__ == "__main__": if __name__ == "__main__":
test_context_attention(4, 32, 8, 16, 1, True) test_context_attention(4, 32, 8, 16, 1, True)
# bench_kernel.run(save_path=".", print_data=True)

View File

@ -128,94 +128,5 @@ def test_flash_decoding(
assert torch.allclose(out_torch, out_triton, atol=1e-3, rtol=1e-4) assert torch.allclose(out_torch, out_triton, atol=1e-3, rtol=1e-4)
BATCH = 16
BLOCK_SIZE = 32
SAME_LEN = True
WARM_UPS = 10
REPS = 100
configs = [
triton.testing.Benchmark(
x_names=["KV_LEN"],
x_vals=[2**i for i in range(8, 14)],
# x_vals=[x for x in range(256, 8192, 256)],
line_arg="provider",
line_vals=["torch", "triton"],
line_names=["Torch", "Triton"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"decoding-block_size-{BLOCK_SIZE}-batch{BATCH}",
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
)
]
@triton.testing.perf_report(configs)
def bench_kernel(
bsz,
KV_LEN,
provider,
block_size: int,
kv_group_num: int,
same_context_len: bool,
):
num_attn_heads = 16
max_num_blocks_per_seq = triton.cdiv(KV_LEN, block_size)
max_seq_len = block_size * max_num_blocks_per_seq
num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
block_size * max_num_blocks_per_seq
dtype = torch.float16
device = get_current_device()
q, k_unpad, v_unpad, kv_lengths = prepare_data(
bsz, num_attn_heads, num_kv_heads, HEAD_DIM, same_context_len, Q_LEN, max_seq_len, dtype, device
)
max_seq_len_in_b = kv_lengths.max().item() # for random lengths
quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_lengths, bsz, max_seq_len_in_b)
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_lengths, bsz, max_seq_len_in_b)
torch_padding_mask = prepare_padding_mask(kv_lengths, bsz, max_seq_len_in_b, q.device)
fn = lambda: torch_attn_ref(
q, k_torch, v_torch, torch_padding_mask, bsz, 1, max_seq_len_in_b, num_attn_heads, num_kv_heads, HEAD_DIM
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
# the maximum block length splitted on kv should be the kv cache block size
kv_max_split_num = (max_seq_len_in_b + block_size - 1) // block_size
output = torch.empty((bsz, num_attn_heads, HEAD_DIM), dtype=dtype, device=device)
mid_output = torch.empty(
size=(bsz, num_attn_heads, kv_max_split_num, HEAD_DIM), dtype=torch.float32, device=q.device
)
mid_output_lse = torch.empty(size=(bsz, num_attn_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
sm_scale = 1.0 / (HEAD_DIM**0.5)
fn = lambda: flash_decoding_attention(
# Here we use q.squeeze(2) because we hide the q_len dimension (which is equivalent to 1),
# refer to attention forward in modeling.
q.squeeze(2),
k_cache,
v_cache,
kv_lengths,
block_tables,
block_size,
max_seq_len_in_b,
output,
mid_output,
mid_output_lse,
sm_scale=sm_scale,
kv_group_num=kv_group_num,
) # [bsz, 1, num_heads, head_dim]
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
return ms, min_ms, max_ms
if __name__ == "__main__": if __name__ == "__main__":
test_flash_decoding(16, 32, 32, 16, 1, True) test_flash_decoding(16, 32, 32, 16, 1, True)
# bench_kernel.run(save_path=".", print_data=True)

View File

@ -1,70 +1,26 @@
from copy import deepcopy from copy import deepcopy
import pytest
import torch import torch
import triton from packaging import version
from colossalai.kernel.triton.fused_rotary_embedding import fused_rotary_embedding from colossalai.kernel.triton.fused_rotary_embedding import fused_rotary_embedding
from colossalai.kernel.triton.no_pad_rotary_embedding import rotary_embedding from colossalai.kernel.triton.no_pad_rotary_embedding import rotary_embedding
from colossalai.kernel.triton.rotary_cache_copy import get_xine_cache from colossalai.kernel.triton.rotary_cache_copy import get_xine_cache
BATCH = 16 try:
configs = [ import triton # noqa
triton.testing.Benchmark(
x_names=["num_tokens"], HAS_TRITON = True
x_vals=[2**i for i in range(4, 12)], except ImportError:
line_arg="provider", HAS_TRITON = False
line_vals=["torch_rotary_emb_func", "triton_rotary_emb_func"], print("please install triton from https://github.com/openai/triton")
line_names=["torch_rotary_emb_func", "triton_rotary_emb_func"],
styles=[("red", "-"), ("blue", "-")], TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
ylabel="ms",
plot_name=f"rotary_emb-batch-{BATCH}",
args={"num_kv_heads": 16},
)
]
def torch_rotary_emb(x, cos, sin): @pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton")
seq_len, h, dim = x.shape def test_fused_rotary_emb():
x0 = x[:, :, 0 : dim // 2]
x1 = x[:, :, dim // 2 : dim]
cos = cos.view((seq_len, 1, dim // 2))
sin = sin.view((seq_len, 1, dim // 2))
o0 = x0 * cos - x1 * sin
o1 = x0 * sin + x1 * cos
return torch.cat((o0, o1), dim=-1)
@triton.testing.perf_report(configs)
def benchmark_rotary_emb(
provider: str,
num_tokens: int,
num_kv_heads: int,
):
warmup = 10
rep = 100
head_dim = 128
dtype = torch.float16
q_shape = (num_tokens, num_kv_heads, head_dim)
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
k_shape = (num_tokens, num_kv_heads, head_dim)
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
cos_shape = (4096, head_dim // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
if provider == "torch_rotary_emb_func":
fn = lambda: torch_rotary_emb(q, cos[:num_tokens], sin[:num_tokens])
elif provider == "triton_rotary_emb_func":
fn = lambda: fused_rotary_embedding(q, k, cos, sin, lengths)
else:
raise ValueError("Undefined provider")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__":
num_tokens = 20 num_tokens = 20
num_kv_heads = 32 num_kv_heads = 32
head_dim = 64 head_dim = 64
@ -82,12 +38,13 @@ if __name__ == "__main__":
cos_cache = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda") cos_cache = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin_cache = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda") sin_cache = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
cos = get_xine_cache(lengths, cos_cache[:, : head_dim // 2]) cos, sin = get_xine_cache(lengths, cos_cache[:, : head_dim // 2], sin_cache[:, : head_dim // 2])
sin = get_xine_cache(lengths, sin_cache[:, : head_dim // 2])
rotary_embedding(q, k, cos, sin) rotary_embedding(q, k, cos, sin)
fused_rotary_embedding(q_copy, k_copy, cos_cache, sin_cache, lengths) fused_rotary_embedding(q_copy, k_copy, cos_cache, sin_cache, lengths)
torch.allclose(q, q_copy) torch.allclose(q, q_copy)
torch.allclose(k, k_copy) torch.allclose(k, k_copy)
# benchmark_rotary_emb.run(save_path=".",print_data=True)
if __name__ == "__main__":
test_fused_rotary_emb()

View File

@ -1,6 +1,5 @@
import pytest import pytest
import torch import torch
import triton
from packaging import version from packaging import version
from transformers.models.llama.modeling_llama import LlamaRMSNorm from transformers.models.llama.modeling_llama import LlamaRMSNorm
@ -52,70 +51,5 @@ def test_layer_norm(M, N):
assert torch.allclose(x, residual, atol=1e-5, rtol=1e-3) assert torch.allclose(x, residual, atol=1e-5, rtol=1e-3)
# Triton benchmark plot attributions
configs = [
triton.testing.Benchmark(
x_names=["SEQUENCE_TOTAL"],
x_vals=[i for i in range(128, 1025, 128)],
line_arg="provider",
line_vals=[
"vllm_rms_layernorm",
"triton_rms_layernorm",
"triton_rms_layernorm_with_residual",
"vllm_rms_layernorm_with_residual",
],
line_names=[
"vllm_rms_layernorm",
"triton_rms_layernorm",
"triton_rms_layernorm_with_residual",
"vllm_rms_layernorm_with_residual",
],
styles=[("red", "-"), ("blue", "-"), ("yellow", "-"), ("green", "-")],
ylabel="ms",
plot_name=f"RMSNorm benchmarking results",
args={"HIDDEN_SIZE": 1024},
)
]
@triton.testing.perf_report(configs)
def benchmark_rms_layernorm(
provider: str,
SEQUENCE_TOTAL: int,
HIDDEN_SIZE: int,
):
try:
from vllm.model_executor.layers.layernorm import RMSNorm
except ImportError:
raise ImportError("Please install vllm from https://github.com/vllm-project/vllm")
warmup = 10
rep = 1000
dtype = torch.float16
eps = 1e-5
x_shape = (SEQUENCE_TOTAL, HIDDEN_SIZE)
w_shape = (x_shape[-1],)
residual = torch.rand(x_shape, dtype=dtype, device="cuda")
weight = torch.ones(w_shape, dtype=dtype, device="cuda")
vllm_norm = RMSNorm(hidden_size=HIDDEN_SIZE, eps=eps).to(dtype=dtype, device="cuda")
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
if provider == "vllm_rms_layernorm":
fn = lambda: vllm_norm(x)
elif provider == "triton_rms_layernorm":
fn = lambda: rms_layernorm(x, weight, eps=eps)
elif provider == "vllm_rms_layernorm_with_residual":
fn = lambda: vllm_norm(x, residual=residual)
elif provider == "triton_rms_layernorm_with_residual":
fn = lambda: rms_layernorm(x, weight, eps=eps, residual=residual)
else:
raise ValueError("Undefined provider.")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__": if __name__ == "__main__":
test_layer_norm() test_layer_norm()
# benchmark_rms_layernorm.run(save_path=".", print_data=True)

View File

@ -3,8 +3,8 @@ import torch
from packaging import version from packaging import version
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
from colossalai.kernel.triton import copy_kv_to_blocked_cache, decoding_fused_rotary_embedding, rotary_embedding from colossalai.kernel.triton import decoding_fused_rotary_embedding
from tests.test_infer.test_ops.triton.kernel_utils import mock_alloc_block_table_and_kvcache_v2, mock_alloc_single_token from tests.test_infer.test_ops.triton.kernel_utils import mock_alloc_block_table_and_kvcache_v2
try: try:
import triton # noqa import triton # noqa
@ -28,6 +28,9 @@ def torch_rotary_emb(x, cos, sin):
return torch.cat((o0, o1), dim=-1) return torch.cat((o0, o1), dim=-1)
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
@pytest.mark.parametrize("BATCH_SIZE", [4]) @pytest.mark.parametrize("BATCH_SIZE", [4])
@pytest.mark.parametrize("SEQ_LEN", [64]) @pytest.mark.parametrize("SEQ_LEN", [64])
@pytest.mark.parametrize("H", [32]) @pytest.mark.parametrize("H", [32])
@ -77,82 +80,5 @@ def test_rotary_emb(BATCH_SIZE, SEQ_LEN, H, D, dtype):
assert torch.allclose(new_q, q_ref, atol=1e-4, rtol=1e-4) assert torch.allclose(new_q, q_ref, atol=1e-4, rtol=1e-4)
BATCH = 16
configs = [
triton.testing.Benchmark(
x_names=["num_tokens"],
x_vals=[2**i for i in range(4, 11)],
line_arg="provider",
line_vals=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
line_names=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"rotary_emb-batch-{BATCH}",
args={"num_kv_heads": 16},
)
]
@triton.testing.perf_report(configs)
def benchmark_rotary_emb(
provider: str,
num_tokens: int,
num_kv_heads: int,
):
BATCH_SIZE = 4
SEQ_LEN = num_tokens // BATCH_SIZE
max_num_blocks_per_seq = 8
block_size = 64
warmup = 10
rep = 100
head_dim = 4096
dtype = torch.float16
q_shape = (num_tokens, num_kv_heads, head_dim)
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
k_shape = (num_tokens, num_kv_heads, head_dim)
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
v = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
cos_shape = (num_tokens, head_dim // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
v_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
past_kv_seq_lengths = torch.tensor([SEQ_LEN - 1 for _ in range(BATCH_SIZE)], dtype=torch.int32, device="cuda")
block_tables = mock_alloc_block_table_and_kvcache_v2(
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
)
new_k = torch.randn((BATCH_SIZE, num_kv_heads, head_dim), dtype=dtype, device="cuda")
new_q = torch.randn_like(new_k)
new_v = torch.randn_like(new_k)
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
kv_seq_lengths = past_kv_seq_lengths + 1
block_tables = block_tables.to(device="cuda")
if provider == "no_fused_rotary_emb_func":
fn = lambda: [
rotary_embedding(new_q, new_k, cos, sin),
copy_kv_to_blocked_cache(
new_k, new_v, k_cache, v_cache, kv_lengths=kv_seq_lengths, block_tables=block_tables
),
]
elif provider == "fused_triton_rotary_emb_func":
fn = lambda: decoding_fused_rotary_embedding(
new_q, new_k, new_k, cos, sin, k_cache, k_cache, block_tables, kv_seq_lengths
)
else:
raise ValueError("Undefined provider")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__": if __name__ == "__main__":
test_rotary_emb(4, 64, 32, 64, torch.float32) test_rotary_emb(4, 64, 32, 64, torch.float32)
# benchmark_rotary_emb.run(save_path=".", print_data=True)

View File

@ -38,6 +38,9 @@ def get_cos_sin(lengths, cos_cache, sin_cache, is_prompts, dtype):
return (cos_output, sin_output) return (cos_output, sin_output)
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
@pytest.mark.parametrize("BATCH_SIZE", [4]) @pytest.mark.parametrize("BATCH_SIZE", [4])
@pytest.mark.parametrize("MAX_SEQ_LEN", [64]) @pytest.mark.parametrize("MAX_SEQ_LEN", [64])
@pytest.mark.parametrize("HEAD_DIM", [64]) @pytest.mark.parametrize("HEAD_DIM", [64])
@ -59,46 +62,5 @@ def test_get_xine_cache(BATCH_SIZE, MAX_SEQ_LEN, HEAD_DIM, dtype):
assert torch.allclose(sin, nsin_ref) assert torch.allclose(sin, nsin_ref)
configs = [
triton.testing.Benchmark(
x_names=["max_num_tokens"],
x_vals=[2**i for i in range(6, 12)],
line_arg="provider",
line_vals=["torch_get_cos_sin", "triton_get_cos_sin"],
line_names=["torch_get_cos_sin", "triton_get_cos_sin"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name="Get_cos-sin_func",
args={"batch_size": 16, "head_dim": 256},
)
]
@triton.testing.perf_report(configs)
def benchmark_get_xine_cache(
provider: str,
max_num_tokens: int,
batch_size: int,
head_dim: int,
):
warmup = 10
rep = 1000
dtype = torch.float16
cos_cache = torch.randn((8912, head_dim), dtype=dtype, device="cuda")
sin_cache = torch.randn((8912, head_dim), dtype=dtype, device="cuda")
lengths = torch.randint(2, max_num_tokens, (batch_size,), device="cuda")
if provider == "torch_get_cos_sin":
fn = lambda: get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=True, dtype=dtype)
elif provider == "triton_get_cos_sin":
fn = lambda: get_xine_cache(lengths, cos_cache, sin_cache, is_prompts=True)
else:
raise ValueError("Undefined provider")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__": if __name__ == "__main__":
test_get_xine_cache(4, 64, 256, torch.float32) test_get_xine_cache(4, 64, 256, torch.float32)
# benchmark_get_xine_cache.run(save_path=".",print_data=True)