mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 03:52:01 +00:00
[gemini] fix argument naming during chunk configuration searching
This commit is contained in:
@@ -114,9 +114,9 @@ def classify_params_by_dp_degree(param_order: OrderedParamGenerator,
|
||||
|
||||
def search_chunk_configuration(
|
||||
model: nn.Module,
|
||||
search_range_mb: float,
|
||||
search_interval_byte: int, # hidden size is the best value for the interval
|
||||
min_chunk_size_mb: float = 32,
|
||||
search_range_m: float,
|
||||
search_interval: int, # hidden size is the best value for the interval
|
||||
min_chunk_size_m: float = 32,
|
||||
filter_exlarge_params: bool = True,
|
||||
strict_ddp_flag: bool = False,
|
||||
memstas: Optional[MemStats] = None) -> Tuple[Dict, int, int]:
|
||||
@@ -126,9 +126,9 @@ def search_chunk_configuration(
|
||||
|
||||
Args:
|
||||
model (nn.Module): torch module
|
||||
search_range_mb (float): searching range in mega byte.
|
||||
search_interval_byte (int): searching interval in byte.
|
||||
min_chunk_size_mb (float, optional): the minimum size of a distributed chunk.
|
||||
search_range_m (float): searching range divided by 2^20.
|
||||
search_interval (int): searching interval.
|
||||
min_chunk_size_m (float, optional): the minimum size of a distributed chunk, divided by 2^20..
|
||||
filter_exlarge_params (bool, optional): filter extreme large parameters. Defaults to True.
|
||||
strict_ddp_flag (bool, optional): whether to enable the strict ddp mode.
|
||||
all parameters keep replicated in this mode.
|
||||
@@ -145,9 +145,9 @@ def search_chunk_configuration(
|
||||
for p in model.parameters():
|
||||
param_order.append(p)
|
||||
|
||||
search_range_byte = round(search_range_mb * 1024**2)
|
||||
min_chunk_size_byte = round(min_chunk_size_mb * 1024**2)
|
||||
assert search_range_byte >= 0
|
||||
search_range = round(search_range_m * 1024**2)
|
||||
min_chunk_size = round(min_chunk_size_m * 1024**2)
|
||||
assert search_range >= 0
|
||||
|
||||
params_dict = classify_params_by_dp_degree(param_order, strict_ddp_flag)
|
||||
size_lcm = np.lcm.reduce(list(params_dict.keys()))
|
||||
@@ -162,7 +162,7 @@ def search_chunk_configuration(
|
||||
total_param_size += group_acc_size
|
||||
|
||||
# let small parameters keep gathered in CUDA all the time
|
||||
if group_acc_size < min_chunk_size_byte:
|
||||
if group_acc_size < min_chunk_size:
|
||||
config_dict[dp_degree] = dict(chunk_size=group_acc_size, keep_gathered=True)
|
||||
else:
|
||||
size_dict[dp_degree] = size_list
|
||||
@@ -170,15 +170,15 @@ def search_chunk_configuration(
|
||||
if filter_exlarge_params:
|
||||
_filter_exlarge_params(model, size_dict)
|
||||
|
||||
max_size = min_chunk_size_byte
|
||||
max_size = min_chunk_size
|
||||
for key in size_dict:
|
||||
max_size = max(max_size, max(size_dict[key]))
|
||||
start_size = int(math.ceil(max_size / search_interval_byte) * search_interval_byte)
|
||||
start_size = int(math.ceil(max_size / search_interval) * search_interval)
|
||||
|
||||
min_chunk_waste = float('+inf')
|
||||
best_chunk_size = start_size
|
||||
|
||||
for chunk_size in range(start_size, start_size + search_range_byte + 1, search_interval_byte):
|
||||
for chunk_size in range(start_size, start_size + search_range + 1, search_interval):
|
||||
temp_waste = 0
|
||||
for key in size_dict:
|
||||
temp_waste += _get_unused_byte(size_dict[key], chunk_size)
|
||||
|
Reference in New Issue
Block a user