[FP8] rebase main (#5963)

* add SimPO

* fix dataloader

* remove debug code

* add orpo

* fix style

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix torch colossalai version

* update transformers version

* [shardformer] DeepseekMoE support (#5871)

* [Feature] deepseek moe expert parallel implement

* [misc] fix typo, remove redundant file (#5867)

* [misc] fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] deepseek support & unit test

* [misc] remove debug code & useless print

* [misc] fix typos (#5872)

* [Feature] remove modeling file, use auto config. (#5884)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [Deepseek] remove redundant code (#5888)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [Feature/deepseek] resolve comment. (#5889)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [misc] mv module replacement into if branch

* [misc] add some warning message and modify some code in unit test

* [misc] fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)

* Diffusion Model Inference support

* Stable Diffusion 3 Support

* pixartalpha support

* [HotFix] CI,import,requirements-test for #5838 (#5892)

* [Hot Fix] CI,import,requirements-test

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Enable PP + SP for llama (#5868)

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use a one cross entropy func for all shardformer models

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)

* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint

* fix style

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix eval

* hotfix citation

* [zero] support all-gather overlap (#5898)

* [zero] support all-gather overlap

* [zero] add overlap all-gather flag

* [misc] fix typo

* [zero] update api

* fix orpo cross entropy loss

* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)

* Remove unnecessary calls to deepcopy

* Build DimSpec's difference dict only once

This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.

* Fix documentation of DimSpec's difference method

* [ShardFormer] fix qwen2 sp (#5903)

* [compatibility] support torch 2.2 (#5875)

* Support Pytorch 2.2.2

* keep build_on_pr file and update .compatibility

* fix object_to_tensor usage when torch>=2.3.0 (#5820)

* [misc] support torch2.3 (#5893)

* [misc] support torch2.3

* [devops] update compatibility ci

* [devops] update compatibility ci

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] remove debug

* [devops] remove debug

* [release] update version (#5912)

* [plugin] support all-gather overlap for hybrid parallel (#5919)

* [plugin] fixed all-gather overlap support for hybrid parallel

* add kto

* fix style, add kto data sample

* [Examples] Add lazy init to OPT and GPT examples (#5924)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [ColossalChat] Hotfix for ColossalChat (#5910)

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* fix ddp issue

* add Qwen 1.5 32B

* refactor tokenization

* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)

* cannot access local variable 'default_conversation' where it is not associated with a value

set default value for 'default_conversation'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix test data

* refactor evaluation

* remove real data path

* remove real data path

* Add n_fused as an input from native_module (#5894)

* [FIX BUG] convert env param to int in (#5934)

* [Hotfix] Fix ZeRO typo #5936

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)

* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix style

* fix style

* fix style

* [shardformer] hotfix attn mask (#5945)

* [shardformer] hotfix attn mask (#5947)

* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)

* Distrifusion Support source

* comp comm overlap optimization

* sd3 benchmark

* pixart distrifusion bug fix

* sd3 bug fix and benchmark

* generation bug fix

* naming fix

* add docstring, fix counter and shape error

* add reference

* readme and requirement

* [zero] hotfix update master params (#5951)

* [release] update version (#5952)

* [Chat] Fix lora (#5946)

* fix merging

* remove filepath

* fix style

* Update README.md (#5958)

* [hotfix] Remove unused plan section (#5957)

* remove readme

* fix readme

* update

* [test] add mixtral for sequence classification

* [test] add mixtral transformer test

* [moe] fix plugin

* [test] mixtra pp shard test

* [chore] handle non member group

* [zero] solve hang

* [test] pass mixtral shardformer test

* [moe] implement transit between non moe tp and ep

* [zero] solve hang

* [misc] solve booster hang by rename the variable

* solve hang when parallel mode = pp + dp

* [moe] implement submesh initialization

* [moe] add mixtral dp grad scaling when not all experts are activated

* [chore] manually revert unintended commit

* [chore] trivial fix

* [chore] arg pass & remove drop token

* [test] add mixtral modelling test

* [moe] implement tp

* [moe] test deepseek

* [moe] clean legacy code

* [Feature] MoE Ulysses Support (#5918)

* moe sp support

* moe sp bug solve

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [chore] minor fix

* [moe] init moe plugin comm setting with sp

* moe sp + ep bug fix

* [moe] finalize test (no pp)

* [moe] full test for deepseek and mixtral (pp + sp to fix)

* [chore] minor fix after rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [chore] solve moe ckpt test failure and some other arg pass failure

* [moe] remove ops

* [test] fix test: test_zero1_2

* [bug] fix: somehow logger hangs the program

* [moe] deepseek moe sp support

* [test] add check

* [deepseek] replace attn (a workaround for bug in transformers)

* [misc] skip redunant test

* [misc] remove debug/print code

* [moe] refactor mesh assignment

* Revert "[moe] implement submesh initialization"

This reverts commit 2f9bce6686.

* [chore] change moe_pg_mesh to private

* [misc] remove incompatible test config

* [misc] fix ci failure: change default value to false in moe plugin

* [misc] remove useless condition

* [chore] docstring

* [moe] remove force_overlap_comm flag and add warning instead

* [doc] add MoeHybridParallelPlugin docstring

* [moe] solve dp axis issue

* [chore] remove redundant test case, print string & reduce test tokens

* [feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [lora] lora support hybrid parallel plugin (#5956)

* lora support hybrid plugin

* fix

* fix

* fix

* fix

* fp8 operators for compressed communication

cast_to_fp8, cast_from_fp8, all_reduce_fp8

* fix scaling algorithm in FP8 casting

* support fp8 communication in pipeline parallelism

* add fp8_communication flag in the script

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* shardformer fp8

* fix rebase

* remove all to all

* fix shardformer fp8 communication training degradation

* [fp8] support all-gather flat tensor (#5932)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update low_level_optim.py

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
This commit is contained in:
flybird11111
2024-08-06 16:29:37 +08:00
committed by GitHub
parent 53cb9606bd
commit 0c10afd372
208 changed files with 10962 additions and 2892 deletions

View File

@@ -19,7 +19,6 @@ class GradientStore(BaseStore):
"""
self._grads_of_params = dict()
# stage 2
self._partition_grads = partition_grad
self._working_index = 0 if partition_grad else self._local_rank
# for zero2, it's `param_id: [grad_local_rank]`
self.grad_to_param_mapping = dict()
@@ -91,7 +90,7 @@ class GradientStore(BaseStore):
return grad_list
def get_working_grad_by_param_id(self, param_id) -> Tensor:
def get_working_grad_by_param_id(self, param_id) -> Optional[Tensor]:
"""
Return the working gradient for the specified parameter.
@@ -112,6 +111,7 @@ class GradientStore(BaseStore):
def reset_all_gradients(self):
self._grads_of_params = dict()
self.grad_to_param_mapping = dict()
def get_param_id_for_grad(self, grad: Tensor) -> Optional[int]:
"""Return the id of a parameter which the gradient slice belongs to

View File

@@ -21,9 +21,11 @@ from colossalai.amp.naive_amp.mixed_precision_mixin import (
from colossalai.interface import OptimizerWrapper
from colossalai.logging import get_dist_logger
from colossalai.quantization.fp8 import all_gather_into_tensor_flat_fp8, all_reduce_fp8, reduce_scatter_fp8
from colossalai.tensor.moe_tensor.api import is_moe_tensor
from ._utils import calculate_global_norm_from_list, has_inf_or_nan, release_param_grad, sync_tensor
from .bookkeeping import BucketStore, GradientStore, TensorBucket
from .zero_hook import set_all_gather_handle, wait_all_gather_handle
class LowLevelZeroFP16MixedPrecisionMixin(FP16MixedPrecisionMixin):
@@ -66,7 +68,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
def __init__(
self,
optimizer: Optimizer,
pg_to_param_list: Dict[ProcessGroup, List[nn.Parameter]] = None,
pg_to_param_list: Optional[Dict[ProcessGroup, List[nn.Parameter]]] = None,
initial_scale: int = 2**16, # grad scaler config
min_scale: int = 1,
growth_factor: float = 2.0,
@@ -84,6 +86,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
dp_process_group: Optional[ProcessGroup] = None,
forced_dtype: Optional[torch.dtype] = None,
master_weights: bool = True, # master weights
overlap_allgather: bool = False,
fp8_communication: bool = False,
):
super(LowLevelZeroOptimizer, self).__init__(optim=optimizer)
@@ -92,7 +95,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
self._logger = get_dist_logger()
self._verbose = verbose
if dp_process_group is not None and pg_to_param_list is not None:
if (dp_process_group is not None) and (pg_to_param_list is not None):
raise ValueError("dp_process_group and pg_to_param_list should not be provided at the same time.")
if pg_to_param_list is None:
@@ -123,6 +126,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
# communication params
self._overlap_communication = overlap_communication
self._overlap_allgather = overlap_allgather
self._reduce_bucket_size = reduce_bucket_size
self._communication_dtype = communication_dtype
self._fp8_communication = fp8_communication
@@ -148,6 +152,8 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
# record the padding size of each param
self._padding_map = dict()
# padded working param is all-gather buffer and it shares the same memory with working param
self._working_param_to_padded_working_param = dict()
# mapping working param and master param
self.master_to_working_param = dict()
@@ -248,11 +254,12 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
with torch.no_grad():
if padding_size > 0:
padding_param = torch.nn.functional.pad(param.data.view(-1), [0, padding_size])
# reset working params' ptr when no master weights
if self._master_weights == False:
param.data = padding_param[: param.numel()].view(param.shape)
# # reset working params' ptr when no master weights
# if self._master_weights == False:
param.data = padding_param[: param.numel()].view(param.shape)
else:
padding_param = param.data.view(-1)
self._working_param_to_padded_working_param[param] = padding_param
splited_params = padding_param.split(
padding_param.numel() // self.pid_to_bucket_store[id(param)].world_size
@@ -261,7 +268,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
# use fp32 when master_weights is True
if self._master_weights is True:
splited_param_current_rank = splited_params.detach().float().to(device)
splited_param_current_rank = splited_params.detach().clone().float().to(device)
else:
splited_param_current_rank = splited_params
@@ -338,21 +345,21 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
self._update_unpartitoned_grad(bucket_store, grad_in_bucket.values(), flat_grads_per_rank, group_id)
else:
flat_grads_list = list(flat_grads.split(len(flat_grads) // bucket_store.world_size))
recieved_grad = torch.zeros_like(flat_grads_list[0])
received_grad = torch.zeros_like(flat_grads_list[0])
if self._fp8_communication:
reduce_scatter_fp8(
recieved_grad,
received_grad,
flat_grads_list,
group=bucket_store.torch_pg,
)
else:
dist.reduce_scatter(recieved_grad, flat_grads_list, group=bucket_store.torch_pg)
dist.reduce_scatter(received_grad, flat_grads_list, group=bucket_store.torch_pg)
if recieved_grad.dtype != grad_dtype:
recieved_grad = recieved_grad.to(grad_dtype)
if received_grad.dtype != grad_dtype:
received_grad = received_grad.to(grad_dtype)
grad_in_bucket_current_rank = bucket_store.get_grad()[bucket_store.local_rank]
self._update_partitoned_grad(bucket_store, grad_in_bucket_current_rank, recieved_grad, group_id, 1)
self._update_partitoned_grad(bucket_store, grad_in_bucket_current_rank, received_grad, group_id, 1)
bucket_store.reset()
@@ -562,25 +569,29 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
working_param = real_working_params[group_id][idx]
param_to_gather = master_param.to(device).to(self._dtype)
pg = self.param_to_pg[working_param]
if param_to_gather.numel() > self.pg_to_tensor_bucket[pg].max_size:
buffer_tensor = torch.empty_like(
torch.cat([param_to_gather for _ in range(dist.get_world_size(pg))])
)
if self._fp8_communication:
all_gather_into_tensor_flat_fp8(buffer_tensor, param_to_gather, pg, fp8_format="e4m3")
else:
dist.all_gather_into_tensor(buffer_tensor, param_to_gather, pg)
working_param.data.copy_(buffer_tensor[: working_param.numel()].reshape_as(working_param))
continue
try:
self.pg_to_tensor_bucket[pg].add_to_bucket(param_to_gather, write_back_tensor=working_param)
except RuntimeError:
self.pg_to_tensor_bucket[pg].all_gather(pg, fp8_communication=self._fp8_communication)
self.pg_to_tensor_bucket[pg].add_to_bucket(param_to_gather, write_back_tensor=working_param)
padded_working_param = self._working_param_to_padded_working_param[working_param]
if self._overlap_allgather:
handle = dist.all_gather_into_tensor(padded_working_param, param_to_gather, pg, async_op=True)
set_all_gather_handle(working_param, handle)
else:
if param_to_gather.numel() > self.pg_to_tensor_bucket[pg].max_size:
if self._fp8_communication:
all_gather_into_tensor_flat_fp8(
padded_working_param, param_to_gather, pg, fp8_format="e4m3"
)
else:
dist.all_gather_into_tensor(padded_working_param, param_to_gather, pg)
continue
try:
self.pg_to_tensor_bucket[pg].add_to_bucket(param_to_gather, write_back_tensor=working_param)
except RuntimeError:
self.pg_to_tensor_bucket[pg].all_gather(pg, fp8_communication=self._fp8_communication)
self.pg_to_tensor_bucket[pg].add_to_bucket(param_to_gather, write_back_tensor=working_param)
self.optim.param_groups[group_id]["params"] = self._master_param_groups_of_current_rank[group_id]
for pg, tensor_bucket in self.pg_to_tensor_bucket.items():
if not tensor_bucket.is_empty():
tensor_bucket.all_gather(pg, fp8_communication=self._fp8_communication)
if not self._overlap_allgather:
for pg, tensor_bucket in self.pg_to_tensor_bucket.items():
if not tensor_bucket.is_empty():
tensor_bucket.all_gather(pg, fp8_communication=self._fp8_communication)
def _compute_grad_norm(self, dp_pg: ProcessGroup, gradients: List[Tensor], norm_type: int = 2) -> float:
r"""
@@ -657,6 +668,11 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
for group_id in range(self.num_param_groups):
param_group = self._working_param_groups[group_id]
for param in param_group:
if is_moe_tensor(param) and param.requires_grad and param.grad is None:
# TODO better of of doing this
# assign zero grad to unrouted expert to avoid hang during grad reduction
param.grad = torch.zeros_like(param)
if param.requires_grad and param.grad is not None:
self._add_to_bucket(param, group_id)
@@ -815,8 +831,8 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
"""
for p in model.parameters():
p_id = id(p)
pg = self.param_to_pg[p]
if p_id in self.working_to_master_param:
pg = self.param_to_pg[p]
master_param = self.working_to_master_param[p_id]
padding_size = self.get_param_padding_size(p)
working_param = p.data.view(-1)
@@ -877,13 +893,12 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
def get_param_grad(self, working_param: nn.Parameter) -> Tensor:
grad_store = self.pid_to_grad_store[id(working_param)]
partial_grad = grad_store.get_working_grad_by_param_id(id(working_param))
if partial_grad is None:
grad = grad_store.get_working_grad_by_param_id(id(working_param))
if grad is None:
return None
tensor_list = [torch.empty_like(partial_grad) for _ in range(grad_store.world_size)]
dist.all_gather(tensor_list, partial_grad, group=grad_store.torch_pg)
grad_flat = torch.cat(tensor_list, dim=0)
return grad_flat[: working_param.numel()].reshape_as(working_param)
grad_flat = torch.empty((grad_store.world_size, *grad.shape), dtype=grad.dtype, device=grad.device)
dist.all_gather_into_tensor(grad_flat, grad, group=grad_store.torch_pg)
return grad_flat.view(-1)[: working_param.numel()].view_as(working_param)
def get_working_grads_by_group_id(self, group_id: int) -> List[Tensor]:
working_grads = []
@@ -908,3 +923,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
def get_partitioned_gradients_by_param_id(self, group_id: int, param_id: int) -> List:
grad_store = self.pid_to_grad_store[param_id]
return grad_store.get_partitioned_gradients_by_param_id(group_id, param_id)
def _force_wait_all_gather(self):
for param in self._working_param_to_padded_working_param.keys():
wait_all_gather_handle(param)

View File

@@ -0,0 +1,33 @@
from typing import List
from torch._tensor import Tensor
from colossalai.tensor.param_op_hook import ColoParamOpHook
_ALL_GATHER_HANDLE = "_all_gather_handle"
def wait_all_gather_handle(p):
if hasattr(p, _ALL_GATHER_HANDLE):
handle = getattr(p, _ALL_GATHER_HANDLE)
handle.wait()
delattr(p, _ALL_GATHER_HANDLE)
def set_all_gather_handle(p, handle):
setattr(p, _ALL_GATHER_HANDLE, handle)
class ZeroOpHook(ColoParamOpHook):
def pre_forward(self, params: List[Tensor]) -> None:
for p in params:
wait_all_gather_handle(p)
def post_forward(self, params: List[Tensor]) -> None:
pass
def pre_backward(self, params: List[Tensor]) -> None:
pass
def post_backward(self, params: List[Tensor]) -> None:
pass