mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 19:13:01 +00:00
[FP8] rebase main (#5963)
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686
.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update low_level_optim.py
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
This commit is contained in:
@@ -1,238 +1,132 @@
|
||||
import os
|
||||
import warnings
|
||||
from typing import Dict
|
||||
from copy import deepcopy
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
||||
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
||||
|
||||
import colossalai
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.moe.utils import sync_moe_model_param
|
||||
from colossalai.booster.booster import Booster
|
||||
from colossalai.booster.plugin import HybridParallelPlugin
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from tests.test_moe.moe_utils import assert_loose_close
|
||||
|
||||
# from colossalai.shardformer.layer import SparseMLP
|
||||
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_rank, get_ep_size, is_moe_tensor
|
||||
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use, spawn
|
||||
from tests.test_moe.moe_utils import MoeGradientHandler
|
||||
NUM_BATCH = 4
|
||||
NUM_TOK_PER_BATCH, NUM_EXPERTS = 7, 4
|
||||
HIDDEN_SIZE_PER_HEAD = 4
|
||||
NUM_HEADS = 4
|
||||
TOP_K = 2
|
||||
|
||||
|
||||
def sync_tp_from_local(tp_model, local_model, assert_grad_flag: bool = False) -> None:
|
||||
"""Sync the parameters of tp model from local model
|
||||
@parameterize("stage", [1])
|
||||
@parameterize("ep_size", [2])
|
||||
def run_zero_with_original_model(stage: int, ep_size: int):
|
||||
tp_size = dist.get_world_size() // ep_size
|
||||
dtype = torch.bfloat16
|
||||
|
||||
Args:
|
||||
tp_model (MoeModule)
|
||||
local_model (MoeModule)
|
||||
"""
|
||||
for (tp_name, tp_param), (local_name, local_param) in zip(
|
||||
tp_model.named_parameters(), local_model.named_parameters()
|
||||
):
|
||||
assert tp_name == local_name
|
||||
if not is_moe_tensor(tp_param):
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(tp_param, local_param)
|
||||
assert torch.allclose(tp_param.grad, local_param.grad)
|
||||
else:
|
||||
tp_param.data.copy_(local_param.data)
|
||||
continue
|
||||
rank = torch.distributed.get_rank()
|
||||
torch.cuda.set_device(dist.get_rank())
|
||||
|
||||
tp_rank = get_ep_rank(tp_param)
|
||||
tp_dim = [i for i, (d1, d2) in enumerate(zip(tp_param.shape, local_param.shape)) if d1 != d2][0]
|
||||
tp_slice = [slice(None)] * tp_dim + [
|
||||
slice(tp_param.shape[tp_dim] * tp_rank, tp_param.shape[tp_dim] * (tp_rank + 1))
|
||||
]
|
||||
seed_all(10086)
|
||||
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(tp_param, local_param[tuple(tp_slice)])
|
||||
assert torch.allclose(tp_param.grad, local_param.grad[tuple(tp_slice)])
|
||||
else:
|
||||
tp_param.data.copy_(local_param[tuple(tp_slice)].data)
|
||||
|
||||
|
||||
def sync_tp_from_ep(tp_model, ep_model, assert_grad_flag: bool = False) -> None:
|
||||
"""Sync the parameters of tp model from ep model
|
||||
|
||||
Args:
|
||||
tp_model (MoeModule)
|
||||
ep_model (MoeModule)
|
||||
"""
|
||||
for (tp_name, tp_param), (ep_name, ep_param) in zip(tp_model.named_parameters(), ep_model.named_parameters()):
|
||||
assert tp_name == ep_name
|
||||
if not is_moe_tensor(tp_param):
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(tp_param, ep_param)
|
||||
assert torch.allclose(tp_param.grad, ep_param.grad)
|
||||
else:
|
||||
tp_param.data.copy_(ep_param.data)
|
||||
continue
|
||||
|
||||
# gather param from ep model
|
||||
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
|
||||
all_param = torch.cat(param_list, dim=0)
|
||||
if assert_grad_flag:
|
||||
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
|
||||
all_grad = torch.cat(grad_list, dim=0)
|
||||
|
||||
# get tp param
|
||||
tp_dim = [i for i, (d1, d2) in enumerate(zip(tp_param.shape[1:], all_param.shape[1:])) if d1 != d2][0] + 1
|
||||
tp_rank = get_ep_rank(tp_param)
|
||||
tp_slice = [slice(None)] * tp_dim + [
|
||||
slice(tp_param.shape[tp_dim] * tp_rank, tp_param.shape[tp_dim] * (tp_rank + 1))
|
||||
]
|
||||
new_tp_param = all_param[tuple(tp_slice)]
|
||||
if assert_grad_flag:
|
||||
new_grad = all_grad[tuple(tp_slice)]
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(tp_param, new_tp_param)
|
||||
assert torch.allclose(tp_param.grad, new_grad)
|
||||
else:
|
||||
tp_param.data.copy_(new_tp_param.data)
|
||||
|
||||
|
||||
def sync_local_from_ep(local_model, ep_model, assert_grad_flag: bool = False) -> None:
|
||||
"""Sync the parameters of tp model from ep model
|
||||
|
||||
Args:
|
||||
local_model (MoeModule)
|
||||
ep_model (MoeModule)
|
||||
"""
|
||||
for (local_name, local_param), (ep_name, ep_param) in zip(
|
||||
local_model.named_parameters(), ep_model.named_parameters()
|
||||
):
|
||||
assert local_name == ep_name
|
||||
if "experts" not in local_name:
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(local_param, ep_param)
|
||||
assert torch.allclose(local_param.grad, ep_param.grad)
|
||||
else:
|
||||
local_param.data.copy_(ep_param.data)
|
||||
continue
|
||||
|
||||
# gather param from ep model
|
||||
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
|
||||
all_param = torch.cat(param_list, dim=0)
|
||||
if assert_grad_flag:
|
||||
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
|
||||
all_grad = torch.cat(grad_list, dim=0)
|
||||
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(local_param, all_param)
|
||||
assert torch.allclose(local_param.grad, all_grad)
|
||||
else:
|
||||
local_param.data.copy_(all_param.data)
|
||||
|
||||
|
||||
def run_test(rank: int, world_size: int, port: int, num_experts: int, batch_size: int, dim: int, config: Dict):
|
||||
assert batch_size % world_size == 0
|
||||
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
|
||||
MOE_MANAGER.__init__()
|
||||
MOE_MANAGER.setup(parallel=None)
|
||||
local_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
|
||||
MOE_MANAGER.__init__()
|
||||
MOE_MANAGER.setup(parallel="EP")
|
||||
enable_hierarchical_comm = config.get("enable_hierarchical_comm", False)
|
||||
if enable_hierarchical_comm:
|
||||
os.environ["LOCAL_WORLD_SIZE"] = str(world_size)
|
||||
ep_model = SparseMLP(
|
||||
num_experts=num_experts,
|
||||
hidden_size=dim,
|
||||
intermediate_size=dim * 2,
|
||||
enable_hierarchical_comm=enable_hierarchical_comm,
|
||||
config = MixtralConfig(
|
||||
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
||||
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=NUM_HEADS,
|
||||
num_key_value_heads=NUM_HEADS,
|
||||
num_local_experts=NUM_EXPERTS,
|
||||
num_experts_per_tok=TOP_K,
|
||||
)
|
||||
MOE_MANAGER.__init__()
|
||||
MOE_MANAGER.setup(parallel="TP")
|
||||
tp_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
|
||||
ep_model = ep_model.to(get_accelerator().get_current_device())
|
||||
tp_model = tp_model.to(get_accelerator().get_current_device())
|
||||
local_model = local_model.to(get_accelerator().get_current_device())
|
||||
torch_model = MixtralModel(config).to(dtype).cuda()
|
||||
|
||||
# sync ep param
|
||||
sync_moe_model_param(ep_model)
|
||||
dist_dict = MOE_MANAGER.parallel_info_dict
|
||||
assert_equal_in_group(ep_model.experts.wi.data, dist_dict[world_size].dp_group)
|
||||
assert_equal_in_group(ep_model.experts.wo.data, dist_dict[world_size].dp_group)
|
||||
ep_grad_handler = MoeGradientHandler(ep_model)
|
||||
# sync local param
|
||||
sync_local_from_ep(local_model, ep_model)
|
||||
# sync tp param
|
||||
sync_tp_from_ep(tp_model, ep_model)
|
||||
tp_grad_handler = MoeGradientHandler(tp_model)
|
||||
|
||||
rank = dist.get_rank()
|
||||
input_data = torch.randn(batch_size, dim, device=get_accelerator().get_current_device())
|
||||
micro_batch_size = batch_size // world_size
|
||||
index = rank * micro_batch_size
|
||||
# NOTE: ep & tp takes in sharded data for each process
|
||||
shard_data = input_data.detach()[index : index + micro_batch_size]
|
||||
|
||||
out_local = local_model(input_data)
|
||||
MOE_MANAGER.reset_loss()
|
||||
out_tp = tp_model(shard_data)
|
||||
MOE_MANAGER.reset_loss()
|
||||
out_ep = ep_model(shard_data)
|
||||
MOE_MANAGER.reset_loss()
|
||||
|
||||
assert torch.allclose(
|
||||
out_tp, out_ep, atol=1e-6
|
||||
), f"Rank {rank} failed, max diff: {torch.max(torch.abs(out_tp - out_ep))}"
|
||||
try:
|
||||
out_local_slice = out_local[index : index + micro_batch_size]
|
||||
assert torch.allclose(
|
||||
out_ep, out_local_slice, atol=1e-6
|
||||
), f"Rank {rank} failed, max diff: {torch.max(torch.abs(out_ep - out_local_slice))}"
|
||||
except AssertionError:
|
||||
"""
|
||||
e.g., in local model, tokens = 4, capacity = 2, experts = 2, topk = 1
|
||||
router yields [01] --> [0], [23] --> [1], this is valid as capacity is 2
|
||||
However, in ep mode, there are 2 separate routers dealing with sharded data.
|
||||
Assume router 0 handles token [01] and router 1 handles token [23].
|
||||
Note that for each router the capacity is only 1 !!!
|
||||
Thus, router 0 may yields [0] --> [0] or [1] --> [0], but not both.
|
||||
The same thing happens on router 1. And finally some tokens are dropped due to the sharded nature.
|
||||
"""
|
||||
warnings.warn(
|
||||
"EP & TP may result in different behavior from local model. " "Please check the comments for details."
|
||||
zero_model = deepcopy(torch_model).to(dtype)
|
||||
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
||||
moe_booster = Booster(
|
||||
plugin=MoeHybridParallelPlugin(
|
||||
tp_size=tp_size,
|
||||
moe_tp_size=tp_size,
|
||||
pp_size=1,
|
||||
ep_size=ep_size,
|
||||
zero_stage=stage,
|
||||
overlap_communication=False,
|
||||
initial_scale=1,
|
||||
)
|
||||
)
|
||||
zero_model, zero_optimizer, _, _, _ = moe_booster.boost(zero_model, zero_optimizer)
|
||||
|
||||
out_local.mean().backward()
|
||||
out_tp.mean().backward()
|
||||
tp_grad_handler.handle_gradient()
|
||||
out_ep.mean().backward()
|
||||
ep_grad_handler.handle_gradient()
|
||||
|
||||
assert_equal_in_group(ep_model.experts.wi.grad, dist_dict[world_size].dp_group)
|
||||
assert_equal_in_group(ep_model.experts.wo.grad, dist_dict[world_size].dp_group)
|
||||
sync_tp_from_ep(tp_model, ep_model, assert_grad_flag=True)
|
||||
try:
|
||||
sync_local_from_ep(local_model, ep_model, assert_grad_flag=True)
|
||||
except AssertionError:
|
||||
warnings.warn(
|
||||
"EP & TP may result in different behavior from local model. " "Please check the comments for details."
|
||||
hybird_booster = Booster(
|
||||
plugin=HybridParallelPlugin(
|
||||
tp_size=tp_size,
|
||||
pp_size=1,
|
||||
zero_stage=stage,
|
||||
overlap_communication=False,
|
||||
initial_scale=1,
|
||||
)
|
||||
)
|
||||
hybrid_model, hybrid_optimizer, _, _, _ = hybird_booster.boost(
|
||||
torch_model, torch.optim.SGD(torch_model.parameters(), lr=1)
|
||||
)
|
||||
# create different input
|
||||
seed_all(1453 + rank)
|
||||
|
||||
hybrid_model.train()
|
||||
zero_model.train()
|
||||
for _ in range(2):
|
||||
# zero-dp forward
|
||||
input_data = torch.rand(
|
||||
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
||||
).cuda()
|
||||
zero_output = zero_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||
# zero-dp backward
|
||||
zero_optimizer.backward(zero_output)
|
||||
# torch-ddp forward
|
||||
hybrid_output = hybrid_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||
assert_loose_close(zero_output, hybrid_output, dtype=dtype)
|
||||
# torch-ddp backward
|
||||
hybrid_optimizer.backward(hybrid_output)
|
||||
|
||||
# check grad
|
||||
name_to_p = {n: p for n, p in hybrid_model.named_parameters()}
|
||||
for n, p in zero_model.named_parameters():
|
||||
zero_grad = zero_optimizer.get_param_grad(p)
|
||||
if name_to_p[n].grad is None:
|
||||
name_to_p[n].grad = torch.zeros_like(name_to_p[n])
|
||||
continue
|
||||
if zero_grad.shape != name_to_p[n].grad.shape: # TODO check sharded and sliced moe
|
||||
continue
|
||||
assert_loose_close(zero_grad, name_to_p[n].grad, dtype=dtype, name=n)
|
||||
|
||||
# zero-dp step
|
||||
zero_optimizer.step()
|
||||
|
||||
# original model step
|
||||
hybrid_optimizer.step()
|
||||
|
||||
# check updated param
|
||||
for n, p in zero_model.named_parameters():
|
||||
if p.data.shape != name_to_p[n].data.shape: # TODO check sharded and sliced moe
|
||||
continue
|
||||
assert_loose_close(p.data, name_to_p[n].data, dtype=dtype, name=n)
|
||||
|
||||
print(f"{dist.get_rank()} test passed")
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="moe need to be refactored")
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_zero_with_original_model()
|
||||
|
||||
|
||||
@pytest.mark.skip("tested in corresponding sharderformer")
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("num_experts", [4, 64])
|
||||
@pytest.mark.parametrize("batch_size", [16])
|
||||
@pytest.mark.parametrize("dim", [64])
|
||||
@pytest.mark.parametrize(
|
||||
"config",
|
||||
[
|
||||
{"enable_hierarchical_comm": False},
|
||||
{"enable_hierarchical_comm": True},
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("world_size", [4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_moe_ep_tp(num_experts: int, batch_size: int, dim: int, config: Dict):
|
||||
spawn(run_test, 2, num_experts=num_experts, batch_size=batch_size, dim=dim, config=config)
|
||||
def test_moe_ep_tp(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_moe_ep_tp(num_experts=8, batch_size=32, dim=32)
|
||||
test_moe_ep_tp(world_size=4)
|
||||
|
Reference in New Issue
Block a user