mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 17:46:42 +00:00
[hotfix] ZeroDDP use new process group (#1333)
* process group supports getting ranks in group * chunk mgr receives a process group * update unit test * fix unit tests
This commit is contained in:
@@ -33,11 +33,11 @@ def init_ddp(module: torch.nn.Module) -> ColoDDP:
|
||||
|
||||
|
||||
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False) -> ZeroDDP:
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 2) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
pg = ProcessGroup()
|
||||
return ZeroDDP(module, gemini_manager, pg)
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 2) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, pg)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
return ZeroDDP(module, gemini_manager)
|
||||
|
||||
|
||||
class Net(torch.nn.Module):
|
||||
|
@@ -28,11 +28,11 @@ def init_ddp(module: torch.nn.Module) -> ColoDDP:
|
||||
|
||||
|
||||
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False, use_zero: bool = False) -> ZeroDDP:
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 4) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
pg = ProcessGroup()
|
||||
return ZeroDDP(module, gemini_manager, process_group=pg)
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 4) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, pg, enable_distributed_storage=use_zero)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
return ZeroDDP(module, gemini_manager)
|
||||
|
||||
|
||||
def run_state_dict(ddp_init_func: Callable[[torch.nn.Module], ColoDDP]):
|
||||
|
@@ -7,8 +7,7 @@ from functools import partial
|
||||
from colossalai.gemini import ChunkManager
|
||||
from colossalai.testing import rerun_if_address_is_in_use, parameterize
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.tensor import ProcessGroup as ColoProcessGroup
|
||||
|
||||
|
||||
def check_has_params(params: List[torch.Tensor], has_tensors: List[bool]):
|
||||
@@ -38,12 +37,13 @@ TOTAL_MEM = {True: {True: [512, 512], False: [1024, 1024]}, False: {True: [512,
|
||||
@parameterize('use_chunk', [False, True])
|
||||
@parameterize('use_zero', [False, True])
|
||||
def run_chunk_zero(use_chunk, use_zero):
|
||||
rank = gpc.get_local_rank(ParallelMode.DATA)
|
||||
pg = ColoProcessGroup()
|
||||
rank = pg.rank()
|
||||
if rank == 0:
|
||||
print(f'use_chunk={use_chunk}, use_zero={use_zero}')
|
||||
params = [torch.rand(8, 8) for _ in range(3)]
|
||||
chunk_size = 128 if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
chunk_manager = ChunkManager(chunk_size, pg, enable_distributed_storage=use_zero)
|
||||
chunk_manager.create_group('param')
|
||||
assert chunk_manager.total_mem['cpu'] == 0
|
||||
assert chunk_manager.total_mem['cuda'] == 0
|
||||
|
@@ -31,8 +31,6 @@ def check_param_equal(model, torch_model, pg: ProcessGroup):
|
||||
def check_grad_equal(model, torch_model, pg: ProcessGroup):
|
||||
for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()):
|
||||
if p.grad is not None:
|
||||
torch.distributed.barrier()
|
||||
print(torch.distributed.get_rank(), p.grad)
|
||||
assert tensor_shard_equal(tp.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad,
|
||||
pg.tp_local_rank(), pg.tp_world_size()), \
|
||||
f'{tp.grad} vs {p.grad}\n{n}:\n\t{tp.grad.shape} vs {p.grad.shape} in {pg.rank()}'
|
||||
@@ -63,9 +61,9 @@ def init_1d_col_spec(model, pg: ProcessGroup):
|
||||
p.set_tensor_spec(*spec)
|
||||
|
||||
|
||||
@parameterize('use_chunk', [False])
|
||||
@parameterize('use_zero', [False])
|
||||
@parameterize('placement_policy', ['cuda'])
|
||||
@parameterize('use_chunk', [False, True])
|
||||
@parameterize('use_zero', [False, True])
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
@@ -92,10 +90,11 @@ def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
||||
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
pg,
|
||||
enable_distributed_storage=use_zero,
|
||||
init_device=GeminiManager.get_default_device(placement_policy))
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager, pg)
|
||||
model = ZeroDDP(model, gemini_manager)
|
||||
optim = HybridAdam(model.parameters(), lr=1e-3)
|
||||
optim = ZeroOptimizer(optim, model, initial_scale=1)
|
||||
|
||||
@@ -104,7 +103,7 @@ def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
|
||||
|
||||
# print(chunk_manager)
|
||||
print(chunk_manager)
|
||||
check_param_equal(model, torch_model, pg)
|
||||
|
||||
model.eval()
|
||||
@@ -129,13 +128,12 @@ def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
if world_size == 4:
|
||||
run_gpt(tp_init_spec_func=init_1d_col_spec)
|
||||
# run_gpt(tp_init_spec_func=init_1d_row_spec)
|
||||
run_gpt(tp_init_spec_func=init_1d_row_spec)
|
||||
else:
|
||||
run_gpt(tp_init_spec_func=init_1d_col_spec)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.skip("buggy test")
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gpt(world_size):
|
||||
|
@@ -20,13 +20,14 @@ from colossalai.tensor import ProcessGroup
|
||||
|
||||
|
||||
def init_zero(model, use_chunk, use_zero, placement_policy):
|
||||
pg = ProcessGroup()
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
pg,
|
||||
enable_distributed_storage=use_zero,
|
||||
init_device=GeminiManager.get_default_device(placement_policy))
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
pg = ProcessGroup()
|
||||
return ZeroDDP(model, gemini_manager, pg)
|
||||
return ZeroDDP(model, gemini_manager)
|
||||
|
||||
|
||||
def run_step(model, optim, criterion, data, label):
|
||||
|
Reference in New Issue
Block a user