mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-17 23:18:36 +00:00
[autoparallel] add layernorm handler (#1629)
This commit is contained in:
70
tests/test_auto_parallel/test_layer_norm_handler.py
Normal file
70
tests/test_auto_parallel/test_layer_norm_handler.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import torch
|
||||
from torch.fx import GraphModule
|
||||
import torch.nn as nn
|
||||
import pytest
|
||||
from colossalai.auto_parallel.solver import sharding_strategy
|
||||
|
||||
from colossalai.fx.proxy import ColoProxy
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||||
from colossalai.auto_parallel.solver.op_handler.layer_norm_handler import LayerNormHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class LNModel(nn.Module):
|
||||
|
||||
def __init__(self, c):
|
||||
super().__init__()
|
||||
self.ln = nn.LayerNorm(c)
|
||||
|
||||
def forward(self, x):
|
||||
x = x * 2
|
||||
x = self.ln(x)
|
||||
return x
|
||||
|
||||
|
||||
def test_bn_handler():
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
entire_shape = torch.Size((4, 4, 128))
|
||||
|
||||
tracer = ColoTracer()
|
||||
model = LNModel(128)
|
||||
input_sample = {'x': torch.rand(4, 4, 128).to('meta')}
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
|
||||
# %ln : [#users=1] = call_module[target=ln](args = (%mul,), kwargs = {})
|
||||
# return ln
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
# [x, mul, ln, output]
|
||||
nodes = [node for node in gm.graph.nodes]
|
||||
sharding_spec_for_input = ShardingSpec(device_mesh, entire_shape, {})
|
||||
sharding_strategy_for_input = ShardingStrategy('node_1', sharding_spec_for_input)
|
||||
strategies_vector_for_input = StrategiesVector(nodes[1])
|
||||
strategies_vector_for_input.append(sharding_strategy_for_input)
|
||||
setattr(nodes[1], 'strategies_vector', strategies_vector_for_input)
|
||||
|
||||
# generate bn strategy
|
||||
strategies_vector = StrategiesVector(node=nodes[2])
|
||||
ln_handler = LayerNormHandler(
|
||||
node=nodes[2],
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=strategies_vector,
|
||||
)
|
||||
ln_handler.register_strategy()
|
||||
# ['[S0, R, R] = [S0, R, R] x [R]', '[R, S0, R] = [R, S0, R] x [R]', '[S1, R, R] = [S1, R, R] x [R]', '[R, S1, R] = [R, S1, R] x [R]',
|
||||
# '[S0, S1, R] = [S0, S1, R] x [R]', '[S1, S0, R] = [S1, S0, R] x [R]', '[S01, R, R] = [S01, R, R] x [R]', '[R, S01, R] = [R, S01, R] x [R]', 'RR = RR x R']
|
||||
strategy_name_list = [strategy.name for strategy in ln_handler.strategies_vector]
|
||||
|
||||
assert len(strategy_name_list) == 9
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bn_handler()
|
Reference in New Issue
Block a user