[tensor] reorganize files (#820)

This commit is contained in:
Jiarui Fang
2022-04-21 14:15:48 +08:00
committed by GitHub
parent ab962b9735
commit 0ce8924ceb
11 changed files with 71 additions and 76 deletions

View File

@@ -0,0 +1,7 @@
from .op_wrapper import (
colo_op_impl,)
from .colo_tensor import ColoTensor
from .utils import convert_parameter
from ._ops import *
__all__ = ['ColoTensor', 'convert_parameter', 'colo_op_impl']

View File

@@ -0,0 +1,3 @@
from .init import colo_uniform
from .linear import colo_linear
from .element_wise import colo_mean

View File

@@ -0,0 +1,29 @@
import torch
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.tensor import ColoTensor
@colo_op_impl(torch.mean)
def colo_mean(types, args=(), kwargs=None, pg=None):
stateful_tensor = args[0]
return torch.mean(stateful_tensor.torch_tensor())
def register_elementwise_op(op):
@colo_op_impl(op)
def elementwise_op(types, args=(), kwargs=None, pg=None):
"""
Handles ``__torch_function__`` dispatch for the elementwise op such
as ``torch.nn.functional.gelu`` or ``torch.nn.functional.relu``.
This method computes on either a normal tensor or a sharded tensor.
"""
input_tensor = args[0]
# Validate types
if not isinstance(input_tensor, ColoTensor):
raise TypeError("input needs to be a ColoTensor")
return op(input_tensor.torch_tensor())
register_elementwise_op(torch.nn.functional.gelu)
register_elementwise_op(torch.nn.functional.relu)

View File

@@ -0,0 +1,29 @@
import torch
from colossalai.tensor.op_wrapper import colo_op_impl
def validate_param(param, param_name):
if param is None:
raise ValueError(f"param: {param_name} shouldn't be None!")
@colo_op_impl(torch.nn.init.uniform_)
def colo_uniform(types, args=(), kwargs=None, pg=None):
r"""
Fills the Tensor in sharded_tensor.local_shards with values drawn from the uniform
distribution :math:`\mathcal{U}(a, b)`.
Args:
sharded_tensor: tensor sharded across devices
a: the lower bound of the uniform distribution
b: the upper bound of the uniform distribution
"""
validate_param(kwargs, "kwargs")
stateful_tensor = kwargs["tensor"]
validate_param(stateful_tensor, "stateful_tensor")
a = kwargs['a']
validate_param(a, "a")
b = kwargs['b']
validate_param(b, "b")
torch.nn.init.uniform_(stateful_tensor.torch_tensor(), a=a, b=b)
return stateful_tensor

View File

@@ -0,0 +1,29 @@
import torch
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.tensor.colo_tensor import ColoTensor
from packaging import version
@colo_op_impl(torch.nn.functional.linear)
def colo_linear(types, args, kwargs, pg):
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
This method computes a linear.
"""
input_tensor = args[0]
weight = args[1]
if version.parse(torch.__version__) > version.parse("1.11.0"):
if len(args) == 3:
bias = args[2]
else:
bias = None
else:
bias = kwargs.get('bias', None)
if isinstance(bias, ColoTensor):
bias = bias.torch_tensor()
# Add communication logic before and after linear call.
if isinstance(weight, ColoTensor):
return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias)
else:
return torch.nn.functional.linear(input_tensor, weight, bias)

View File

@@ -0,0 +1,29 @@
import torch
from .op_wrapper import _COLOSSAL_OPS
class ColoTensor(object):
def __new__(cls, *args, **kwargs):
return super(ColoTensor, cls).__new__(cls)
def __init__(self, t: torch.Tensor) -> None:
self._torch_tensor = t
def torch_tensor(self) -> torch.Tensor:
return self._torch_tensor
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
global _COLOSSAL_OPS
if func in _COLOSSAL_OPS:
for arg in args:
if isinstance(arg, ColoTensor):
return _COLOSSAL_OPS[func](types, args, kwargs, None)
for kwarg in kwargs.values():
if isinstance(kwarg, ColoTensor):
return _COLOSSAL_OPS[func](types, args, kwargs, None)
raise RuntimeError(f"torch function '{func.__name__}', with args: {args} and "
f"kwargs: {kwargs} not supported for ColoTensor!")

View File

@@ -0,0 +1,58 @@
from typing import (
Callable,
Dict,
)
import functools
# Custom sharded ops
_COLOSSAL_OPS: Dict[str, Callable] = {}
def _register_colo_op(op, func):
from inspect import signature
if len(signature(func).parameters) != 4:
raise TypeError(f'Custom stateful op function expects signature: '
f'(types, args, kwargs, process_group), but received '
f'signature: {signature(func)}')
global _COLOSSAL_OPS
_COLOSSAL_OPS[op] = func
def colo_op_impl(func):
"""
Provides a way for users to write their own custom operator. This
can be used to override existing ColoTensor operators or write a new
one not supported by ColoTensor. If the operator in question is covered
by ``__torch_function__`` dispatch and has a ColoTensor as any of its
parameters, the function provided will be invoked for that operator.
Example::
>>> @colo_op_impl(torch.nn.functional.linear)
>>> def my_custom_linear(types, args, kwargs, process_group):
>>> ....
>>>
>>> input = torch.rand(10, 32)
>>> weight = ColoTensor(torch.rand(32, 16))
>>> bias = ColoTensor(torch.rand(16))
>>> # This will call `my_custom_linear` instead of the default.
>>> torch.nn.functional.linear(input, weight, bias)
The types, args and kwargs parameters are the same parameters that are
passed to ``__torch_function__`` dispatch API
(https://pytorch.org/docs/stable/notes/extending.html#extending-torch).
Args:
func(Callable): Torch function for which we want to provide a sharded
implementation (ex: torch.nn.functional.linear)
"""
def decorator_sharded_func(wrapped_func):
_register_colo_op(func, wrapped_func)
@functools.wraps(wrapped_func)
def wrapper(*args, **kwargs):
return wrapped_func(*args, **kwargs)
return wrapper
return decorator_sharded_func

View File

@@ -0,0 +1,33 @@
import torch
from colossalai.tensor.colo_tensor import ColoTensor
def _convert_tensor(tensor: torch.Tensor) -> ColoTensor:
return ColoTensor(tensor)
def convert_parameter(module: torch.nn.Module, param_name: str):
# Perform some validation first.
if not hasattr(module, param_name):
raise ValueError(f'module: {module} does not have parameter with name: {param_name}')
tensor = getattr(module, param_name)
if not isinstance(tensor, torch.Tensor):
raise ValueError(
f'Expected {type(module).__name__}.{param_name} to be a Tensor, but found {type(tensor).__name__}')
if not tensor.is_contiguous():
raise ValueError(f'param: {param_name} is not a contiguous Tensor')
st = _convert_tensor(tensor)
# Replace param with ColoTensor.
# Need to delete the attribute first since param_name might be
# torch.nn.Parameter and can't be replaced with ColoTensor which is
# not torch.nn.Parameter.
delattr(module, param_name)
# Now we can set the attribute appropriately.
setattr(module, param_name, st)