[shardformer] update transformers (#5583)

* flash_attention forward upgrade

* llama_model_forward

* remove useless comment

* update the requirements.txt

* add the transformers version requirements

* remove the LATEST VERSION try

* [shardformer] update bloom model (#5518)

* update bloom model

* remove the version restriction

* [shardformer] update_falcon (#5520)

* [shardformer] update mistral model (#5511)

* [shardformer] update gpt2 (#5502)

* [shardformer] update gptj model (#5503)

* [shardformer] update opt (#5522)

* [shardformer] update t5 model (#5524)

* [shardformer] update whisper model (#5529)

* [shardformer] update vit model (#5530)

* update vit model

* remove the output_hidden_states

* [shardformer] fix llama modeling

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [zero] support multiple (partial) backward passes (#5596)

* [zero] support multiple (partial) backward passes

* [misc] update requirements

* [zero] support multiple (partial) backward passes (#5596)

* [zero] support multiple (partial) backward passes

* [misc] update requirements

* fix conflicts

* [doc] fix ColossalMoE readme (#5599)

* fix readme

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* merge with main

* merge with main

* llama_model_forward

* remove useless comment

* remove the LATEST VERSION try

* [shardformer] update bloom model (#5518)

* update bloom model

* remove the version restriction

* [shardformer] update mistral model (#5511)

* [shardformer] update opt (#5522)

* [shardformer] update whisper model (#5529)

* [shardformer] fix llama modeling

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606)

* fix no pad token bug

* fixed some auto parallel codegen bug, but might not run on torch 2.1

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [shardformer] fix pipeline grad ckpt (#5620)

* [shardformer] fix pipeline grad ckpt

* [shardformer] fix whisper (#5628)

* [test] fix llama model test

* fix the opt upgrade (#5634)

* [shardformer] fix attn replacement (#5636)

* [shardformer] update flashattention replacement (#5637)

* update transformers

update transformers

fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [test] fix llama test (#5638)

* [gemini] fix buffer cast (#5639)

* Fix shardformer upgrade (#5640)

* fix llama model

* fix the mistral

* fix the shardformer model

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [shardformer]support pipeline parallelism for mistral. (#5642)

* [shardformer] fix attn replacement (#5636)

* [shardformer] update flashattention replacement (#5637)

* update transformers

update transformers

fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Support LLaMA-3 CPT and ST (#5619)

* support LLaMA-3

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Run pre-commit

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [exampe] update llama example (#5626)

* [plugin] support dp inside for hybriad parallel

* [example] update llama benchmark

* [example] update llama benchmark

* [example] update llama readme

* [example] update llama readme

* [example] llama3 (#5631)

* release llama3

* [release] llama3

* [release] llama3

* [release] llama3

* [release] llama3

* [test] fix llama test (#5638)

* [gemini] fix buffer cast (#5639)

* support pp for mistral

* fix

* fix

fix

fix

* fix

---------

Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

---------

Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
This commit is contained in:
Wang Binluo
2024-04-24 22:51:50 +08:00
committed by GitHub
parent f4c5aafe29
commit 0d0a582033
27 changed files with 1155 additions and 441 deletions

View File

@@ -3,6 +3,7 @@ from typing import List, Optional, Tuple, Union
import torch
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
@@ -42,7 +43,7 @@ def _get_attention_mask(
is_causal=True,
)
else:
attention_mask = self.decoder._prepare_decoder_attention_mask(
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
hidden_states,
@@ -57,6 +58,20 @@ class OPTPipelineForwards:
under pipeline setting.
"""
@staticmethod
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
@staticmethod
def opt_model_forward(
self: OPTModel,
@@ -112,7 +127,7 @@ class OPTPipelineForwards:
inputs_embeds = decoder.project_in(inputs_embeds)
device = input_ids.device if input_ids is not None else inputs_embeds.device
inputs_embeds.dtype
hidden_states = inputs_embeds
else:
if hidden_states is None:
raise ValueError("hidden_states shouldn't be None for intermediate stages.")
@@ -125,12 +140,25 @@ class OPTPipelineForwards:
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values_length + seq_length
# embed positions
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=device)
elif attention_mask.shape[1] != mask_seq_length:
raise ValueError(
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
f"{mask_seq_length} (sum of the lengths of current and past inputs)"
if self.decoder._use_flash_attention_2:
# 2d mask is passed through the layers
causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
attention_mask = (
torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if attention_mask is None
else attention_mask
)
else:
# 4d mask is passed through the layers
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
elif attention_mask.shape[1] != mask_seq_length:
raise ValueError(
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
f"{mask_seq_length} (sum of the lengths of current and past inputs)"
)
causal_attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, hidden_states, past_key_values_length
)
if stage_manager.is_first_stage():
@@ -205,20 +233,14 @@ class OPTPipelineForwards:
past_key_value = past_key_values[idx] if past_key_values is not None else None
if decoder.gradient_checkpointing and decoder.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_attention_mask,
head_mask[idx] if head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(