[shardformer] update transformers (#5583)

* flash_attention forward upgrade

* llama_model_forward

* remove useless comment

* update the requirements.txt

* add the transformers version requirements

* remove the LATEST VERSION try

* [shardformer] update bloom model (#5518)

* update bloom model

* remove the version restriction

* [shardformer] update_falcon (#5520)

* [shardformer] update mistral model (#5511)

* [shardformer] update gpt2 (#5502)

* [shardformer] update gptj model (#5503)

* [shardformer] update opt (#5522)

* [shardformer] update t5 model (#5524)

* [shardformer] update whisper model (#5529)

* [shardformer] update vit model (#5530)

* update vit model

* remove the output_hidden_states

* [shardformer] fix llama modeling

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [zero] support multiple (partial) backward passes (#5596)

* [zero] support multiple (partial) backward passes

* [misc] update requirements

* [zero] support multiple (partial) backward passes (#5596)

* [zero] support multiple (partial) backward passes

* [misc] update requirements

* fix conflicts

* [doc] fix ColossalMoE readme (#5599)

* fix readme

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* merge with main

* merge with main

* llama_model_forward

* remove useless comment

* remove the LATEST VERSION try

* [shardformer] update bloom model (#5518)

* update bloom model

* remove the version restriction

* [shardformer] update mistral model (#5511)

* [shardformer] update opt (#5522)

* [shardformer] update whisper model (#5529)

* [shardformer] fix llama modeling

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606)

* fix no pad token bug

* fixed some auto parallel codegen bug, but might not run on torch 2.1

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [shardformer] fix pipeline grad ckpt (#5620)

* [shardformer] fix pipeline grad ckpt

* [shardformer] fix whisper (#5628)

* [test] fix llama model test

* fix the opt upgrade (#5634)

* [shardformer] fix attn replacement (#5636)

* [shardformer] update flashattention replacement (#5637)

* update transformers

update transformers

fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [test] fix llama test (#5638)

* [gemini] fix buffer cast (#5639)

* Fix shardformer upgrade (#5640)

* fix llama model

* fix the mistral

* fix the shardformer model

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [shardformer]support pipeline parallelism for mistral. (#5642)

* [shardformer] fix attn replacement (#5636)

* [shardformer] update flashattention replacement (#5637)

* update transformers

update transformers

fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Support LLaMA-3 CPT and ST (#5619)

* support LLaMA-3

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Run pre-commit

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [exampe] update llama example (#5626)

* [plugin] support dp inside for hybriad parallel

* [example] update llama benchmark

* [example] update llama benchmark

* [example] update llama readme

* [example] update llama readme

* [example] llama3 (#5631)

* release llama3

* [release] llama3

* [release] llama3

* [release] llama3

* [release] llama3

* [test] fix llama test (#5638)

* [gemini] fix buffer cast (#5639)

* support pp for mistral

* fix

* fix

fix

fix

* fix

---------

Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

---------

Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
This commit is contained in:
Wang Binluo
2024-04-24 22:51:50 +08:00
committed by GitHub
parent f4c5aafe29
commit 0d0a582033
27 changed files with 1155 additions and 441 deletions

View File

@@ -5,6 +5,10 @@ from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
@@ -35,6 +39,8 @@ def _get_attention_mask(
hidden_states: torch.Tensor,
past_key_values_length: int,
attention_mask: Optional[torch.FloatTensor],
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
batch_size, seq_length = hidden_states.shape[:2]
mask_seq_length = past_key_values_length + seq_length
@@ -47,12 +53,20 @@ def _get_attention_mask(
is_causal=True,
)
else:
attention_mask = self._prepare_decoder_attention_mask(
attention_mask,
(batch_size, seq_length),
hidden_states,
past_key_values_length,
)
input_shape = (batch_size, seq_length)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._use_sdpa and head_mask is None and not output_attentions:
# output_attentions=True & head_mask can not be supported when using SDPA.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask, input_shape, hidden_states, past_key_values_length
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, hidden_states, past_key_values_length
)
return attention_mask
@@ -539,18 +553,12 @@ class WhisperPipelineForwards:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
None,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
@@ -702,20 +710,16 @@ class WhisperPipelineForwards:
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = _get_attention_mask(
self, shard_config, inputs_embeds, past_key_values_length, attention_mask
)
# embed positions
if input_ids is not None:
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
else:
positions = self.embed_positions(inputs_embeds, past_key_values_length=past_key_values_length)
attention_mask = _get_attention_mask(
self,
shard_config,
inputs_embeds,
past_key_values_length,
attention_mask,
)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
@@ -732,7 +736,6 @@ class WhisperPipelineForwards:
"hidden_states shouldn't be None for stages other than the first stage of encoder/decoder."
)
input_shape = hidden_states.size()[:-1]
attention_mask = _get_attention_mask(
self,
shard_config,
@@ -756,16 +759,8 @@ class WhisperPipelineForwards:
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
@@ -773,6 +768,8 @@ class WhisperPipelineForwards:
head_mask[idx] if head_mask is not None else None,
(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
None, # past_key_value
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(