replace the customized dataloader setup with the build-in one

This commit is contained in:
YeAnbang
2024-06-07 09:43:42 +00:00
parent 790e1362a6
commit 0d7ff10ea5
12 changed files with 79 additions and 218 deletions

View File

@@ -6,12 +6,7 @@ import resource
from contextlib import nullcontext
import torch
from coati.dataset import (
DataCollatorForPreferenceDataset,
StatefulDistributedSampler,
load_tokenized_dataset,
setup_distributed_dataloader,
)
from coati.dataset import DataCollatorForPreferenceDataset, StatefulDistributedSampler, load_tokenized_dataset
from coati.models import LogExpLoss, LogSigLoss, RewardModel, convert_to_lora_module
from coati.trainer import RewardModelTrainer
from coati.utils import load_checkpoint
@@ -169,17 +164,15 @@ def train(args):
mode_map = {"train": "train", "valid": "validation", "test": "test"}
train_dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train", mode_map=mode_map)
data_collator = DataCollatorForPreferenceDataset(tokenizer=tokenizer, max_length=args.max_length)
train_dataloader = setup_distributed_dataloader(
train_dataloader = plugin.prepare_dataloader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
collate_fn=data_collator,
tp_size=plugin.tp_size if hasattr(plugin, "tp_size") else 1,
sp_size=plugin.sp_size if hasattr(plugin, "sp_size") else 1,
pp_size=plugin.pp_size if hasattr(plugin, "pp_size") else 1,
distributed_sampler_cls=StatefulDistributedSampler,
)
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
math.ceil(args.max_epochs * num_update_steps_per_epoch)