mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 03:52:01 +00:00
replace the customized dataloader setup with the build-in one
This commit is contained in:
@@ -6,12 +6,7 @@ import resource
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from coati.dataset import (
|
||||
DataCollatorForPreferenceDataset,
|
||||
StatefulDistributedSampler,
|
||||
load_tokenized_dataset,
|
||||
setup_distributed_dataloader,
|
||||
)
|
||||
from coati.dataset import DataCollatorForPreferenceDataset, StatefulDistributedSampler, load_tokenized_dataset
|
||||
from coati.models import LogExpLoss, LogSigLoss, RewardModel, convert_to_lora_module
|
||||
from coati.trainer import RewardModelTrainer
|
||||
from coati.utils import load_checkpoint
|
||||
@@ -169,17 +164,15 @@ def train(args):
|
||||
mode_map = {"train": "train", "valid": "validation", "test": "test"}
|
||||
train_dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train", mode_map=mode_map)
|
||||
data_collator = DataCollatorForPreferenceDataset(tokenizer=tokenizer, max_length=args.max_length)
|
||||
train_dataloader = setup_distributed_dataloader(
|
||||
|
||||
train_dataloader = plugin.prepare_dataloader(
|
||||
dataset=train_dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=data_collator,
|
||||
tp_size=plugin.tp_size if hasattr(plugin, "tp_size") else 1,
|
||||
sp_size=plugin.sp_size if hasattr(plugin, "sp_size") else 1,
|
||||
pp_size=plugin.pp_size if hasattr(plugin, "pp_size") else 1,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
||||
math.ceil(args.max_epochs * num_update_steps_per_epoch)
|
||||
|
||||
|
Reference in New Issue
Block a user